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Automatic Design of Color Filter Arrays
in the Frequency Domain
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Abstract— In digital color imaging, the raw image is typically
obtained through a single sensor covered by a color filter
array (CFA), which allows only one color component to be
measured at each pixel. The procedure to reconstruct a full color
image from the raw image is known as demosaicking. Since the
CFA may cause irreversible visual artifacts, the CFA and the
demosaicking algorithm are crucial to the quality of demosaicked
images. Fortunately, the design of CFAs in the frequency domain
provides a theoretical approach to handling this issue. However,
almost all the existing design methods in the frequency domain
involve considerable human effort. In this paper, we present a new
method to automatically design CFAs in the frequency domain.
Our method is based on the frequency structure representation
of mosaicked images. We utilize a multi-objective optimization
approach to propose frequency structure candidates, in which the
overlap among the frequency components of images mosaicked
with the CFA is minimized. Then, we optimize parameters for
each candidate, which is formulated as a constrained optimization
problem. We use the alternating direction method to solve it.
Our parameter optimization method is applicable to arbitrary
frequency structures, including those with conjugate replicas of
chrominance components. Experiments on benchmark images
confirm the advantage of the proposed method.

Index Terms— Color filter array (CFA), demosaicking, multi-
objective optimization, alternating direction method (ADM).

I. INTRODUCTION

COLOR images contain at least three color components
at each pixel, such as red (R), green (G), and blue (B),

or cyan (C), magenta (M), and yellow (Y). To produce a
color image, a digital camera would need one sensor for
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each color component to record its values. However, multiple
sensors are expensive and have difficulty in precise registra-
tion. So most digital cameras use a single sensor covered
by a color filter array (CFA). A CFA is a hardware which
has the same size as the sensor and allows only one color
component to be sensed at each pixel. The process to recover
a full color image from the image obtained from a single
sensor with a CFA is called demosaicking [1]–[3]. Both the
CFA and the demosaicking algorithm affect the quality of the
reconstructed full color image. As a demosaicking algorithm
takes the images mosaicked with a CFA as input, one can
design the CFA to make the subsequent demosaicking process
much more robust to visual artifacts. Note that whenever we
refer to CFA design, the CFA is periodic and defined on the
square lattice, in which the minimum periodic array is called
a CFA pattern. For other types of CFAs, e.g., random CFA [4]
or irregular CFA [5], we refer the readers to [5].

Most of the existing CFAs are designed empirically in the
spatial domain under different considerations [6], [7]. The
Bayer CFA [8] is the most popular CFA in the consumer
market (Fig. 1(1a)) and hence the majority of demosaicking
algorithms are proposed for it [1]–[3]. The Bayer CFA was
designed based on the human visual system’s (HVS) greater
sensitivity to green light. However, spectral characteristic
analysis [9] has shown that aliasing artifacts are inherent to
the Bayer CFA. We can see from Fig. 1(2a) that there are
chrominance components of the image mosaicked with Bayer
CFA located on the horizontal and the vertical axes, where the
luminance component has a high spectral density. To overcome
the limitation of the Bayer CFA, many other CFAs have been
proposed [3], [6], [7], [10]–[12]. Recently, Fujifilm X-Trans
CFA [13] was presented to mimic the irregular and randomly
arranged particles in silver halide film. It is claimed to be more
resistant to Moiré effects than the Bayer CFA.

Some more systematic CFA design methods have also
been proposed. Parmar and Reeves [17] developed a CFA
design method using only RGB color components. They
proposed an error criterion that incorporates the HVS effect
in evaluating the perceived quality of the reconstructed image.
They also presented a sequential backward selection (SBS)
scheme to optimize the criterion. Their designed CFA was
shown to perform better than the Bayer CFA in terms of
their error criterion. A similar method was proposed by
Lu and Vetterli [18]. The color components of their CFA
are weighted combinations of R, G, and B. They optimized
the CFA by minimizing the reconstruction error of the lin-
ear minimum mean square error demosaicking [19]. This
approach was extended in [20] to design a CFA that can
simultaneously capture visible and near-infrared image pairs.
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Fig. 1. Four existing CFA patterns and their corresponding spectra and frequency structures. The first row are the (a) Bayer CFA [8], (b) Hirakawa CFA [14],
(c) Condat CFA [15], and (d) Hao CFA [7], respectively. The sum across color channels of all the CFAs are normalized to be all-one matrices. The second
row are the average spectra of all 24 images in the Kodak dataset [16] mosaicked with the corresponding CFAs in the first row. From the second row, we
can clearly see that the luminance spectrum is concentrated in the center and on the horizontal and the vertical axes. The chrominance spectra are located on
the borders in which the dashed and solid circles refer to the replicas of the two chrominance components C1 and C2, respectively. The third row are the
corresponding frequency structures [7] of CFAs in the first row, which record the spectral components and their positions in the second row. Note that by
convention the basebands are placed at the center in the second row, but all the Discrete Fourier Transform (DFT) spectra are periodic in both horizontal and
vertical directions. However, the frequency origin (0, 0) of frequency structures in the third row is at the top-left of the matrix. Images in this paper are
best viewed on screen!

In [21], Parmar and Reeves presented a design method for
three-color CFAs (e.g., RGB, or CMY). They first demon-
strated that the spectral sensitivity functions of the color
filter affect both the color reproduction and the quality of
demosaicked images. Then they selected spectral sensitiv-
ity functions via minimizing the reconstruction error in the
CIELAB space [22] over several illuminants. The obtained
CFAs were shown to perform better than several existing
RGB and CMY CFAs in terms of both perceptual evalua-
tion and objective image quality measure S-CIELAB [22].
Sadeghipoor et al. [23] incorporated the smoothness prior of
spectral sensitivities into the optimization to select spectral
sensitivity functions.

Since the seminal work by Alleysson et al. [9], the frequency
representation of mosaicked images has provided new insights
into demosaicking algorithm [9], [24] and CFA design [14].
The CFA design in the frequency domain [7], [14], [15]
provides a theoretical approach to producing full color images
with fewer visual artifacts. Alleysson et al. found that the
images mosaicked with the Bayer CFA consist of a lumi-
nance component (luma for short) at the baseband and mul-
tiple modulated replicas1 of two independent chrominance

1In general, the replicas of a chrominance component C can be its
conjugate C∗ or aC , where a is a real or complex scalar.

components2 (chroma for short) at the high frequency bands.
We show the spectrum of Bayer CFA in Fig. 1(2a), where the
luma is denoted by the black dashed circle and the modulated
chromas are denoted by the white dashed and solid circles.
Hirakawa and Wolfe [14] extended the spectral characteristic
of Bayer CFA to arbitrary rectangular and periodic CFAs.
Then the CFA design was converted to a parameter search
problem, where the minimum distance between luma and mod-
ulated chromas is maximized. Hirakawa and Wolfe conducted
exhaustive search in the parameter space with several carefully
designed constraints. The optimality of each parameter was
empirically evaluated by its demosaicking performance on an
image set. So their approach is time-consuming and depends
on the demosaicking algorithm and the image set. One of the
obtained CFA is shown in Fig. 1(1b). We can see that the
chromas of images mosaicked with their CFA are modulated
far away from the center and the horizontal and the vertical
axes (Fig. 1(2b)). Condat [15] followed this approach and
developed a constructive method to manually determine the
parameters step by step. He argued that a CFA should be robust
to noise as well as aliasing, especially for photography in

2Note that representing all color requires one luminance component and at
least two independent chrominance components. In order to avoid redundancy,
it is natural to use only two chrominance components.
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Fig. 2. Overview of the proposed automatic CFA design method. From left to right: (a) is the input CFA pattern size, in which ‘L’ marks the position of
luma and ‘0’ marks the available chroma positions. Our method first performs multi-objective optimization (b) to obtain chroma position candidates (c), where
‘1’ marks the selected chroma positions. Then it generates frequency structures (d) according to the chroma position candidates. It next optimizes parameters
for every frequency structure to produce CFAs (e) and finally outputs the obtained CFA (f).

low-light conditions. So he chose the parameters by simul-
taneously maximizing the minimum distance between luma
and chromas and the sensitivity of the CFA. He proposed
a 2 × 3 CFA pattern using six color components (Fig. 1(1c)).
Both approaches need a considerable human effort in parame-
ter optimization. Also, an appropriate luminance/chrominance
basis should be chosen carefully.

An alternative approach for CFA design in the frequency
domain was proposed by Hao et al. [7]. Their method is based
on the frequency structure, which records all the luma and
chromas of mosaicked images at their corresponding frequen-
cies in a matrix (see the third row of Fig. 1). They first manu-
ally specified a frequency structure with some guidelines. Then
for the given frequency structure, the parameter optimization
was formulated as a constrained optimization problem. With
certain assumptions, they used a geometric method to solve
it. The proposed CFA is shown in Fig. 1(1d). Their geometric
method is attractive for it is intuitive and visual. However,
the user has to choose the vertices of optimal triangle on the
boundary of the feasible region. Moreover, it cannot work
when the frequency structure contains conjugate replicas of
a chroma (e.g., the one shown in Fig. 1(3b)). Additionally,
the geometric method is derived from the Frobenius norm
of the inverse of color transformation matrix, which is an
approximation of its spectral norm. Details on this issue are
provided in subsection II-B.

Inspired by Hao et al. [7], in this paper we propose an
automatic method for CFA design in the frequency domain,
which requires no human interaction. As shown in Fig. 2, our
method consists of two main steps. For a given CFA pattern
size, it first proposes frequency structure candidates (the
dashed box in Fig. 2), where the overlap between frequency
components is minimized. Then it optimizes parameters for
each candidate by maximizing the numeric stability of color
transformation (Fig. 2(e)). We summarize the comparison
of automaticity of our method with that of other methods
in Table I. More details on the comparison are presented in
subsection II-B.

TABLE I

COMPARISON OF THE AUTOMATICITY OF DIFFERENT METHODS

IN CFA DESIGN PROCESS. NOTE THAT THE PARAMETER
OPTIMIZATION METHOD DEVELOPED BY HAO [7]

CANNOT WORK WHEN THE FREQUENCY

STRUCTURE CONTAINS CONJUGATE

CHROMA REPLICAS, WHILE
THE PROPOSED ONE CAN

HANDLE THIS CASE

The contributions of this paper are:
• Based on the frequency structure [7], we propose a new

approach for designing CFAs in the frequency domain,
which is fully automatic.

• We use multi-objective optimization to propose frequency
structure candidates, which discards a vast majority of
unpromising frequency structures automatically.

• For a given frequency structure, we formulate parame-
ter optimization as a constrained optimization problem,
which directly works on the spectral norm. We use the
alternating direction method (ADM) to solve it. Our
formulation and solution process are both derived from
the spectral norm, and they are applicable to arbitrary fre-
quency structures, including those with conjugate chroma
replicas.

The remaining part of this paper is organized as follows.
In Section II, we introduce the existing CFA design methods
in the frequency domain. Then we introduce our CFA design
method in Section III and the solution process in the Appendix.
In Section IV, we conduct experiments to show the effective-
ness of our design method. Finally, we conclude the paper in
Section V.

II. RELATED WORK

In this section, we first introduce the frequency rep-
resentation of mosaicked images. Then we review the
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existing design methods of CFAs in the frequency
domain.

A. Frequency Representation of Mosaicked Images

Alleysson et al. [9] showed that an image mosaicked with
the Bayer CFA can be interpreted in the frequency domain
as the sum of a luma and multiple subsampled replicas
of two independent chromas. The subsampling of chromas
is implemented by multiplying with modulation functions.
More importantly, they demonstrated that the luma and the
modulated (or subsampled) chromas have different locations
in the frequency domain, i.e., luma is at the baseband, while
the modulated chromas are at the high frequency bands
(Fig. 1(2a)). This leads to designing a frequency selection
based demosaicking algorithm to recover the luma and the
modulated chromas [9], [24]. It then demodulates the mod-
ulated chromas. If there exist multiple replicas of a chroma,
one can combine all the estimations adaptively to obtain a
more accurate one [24]. The RGB components are finally
estimated using the transformation from luma/chroma basis
to RGB basis. An example of basis transformation is shown
in (2). Frequency selection based demosaicking is linear
which provides a good compromise between the quality of
demosaicked images and computational complexity.

Although the above analysis is induced by the Bayer CFA,
the characterization of mosaicked images that luma and mod-
ulated chromas have different frequency locations can extend
to arbitrary periodic CFAs defined on the square lattice [14]
(see (3) in subsection II-B). Hao et al. [7] proposed using a
matrix called frequency structure to record all the information
about the frequency representation of images mosaicked with
a CFA. The frequency structure contains the luma and all
the replicas of chromas, and with the positions of which one
can obtain all the modulated ones (see Fig. 1). Moreover,
Hao et al. [7] proved that the frequency structure can be
easily computed using a symbolic Discrete Fourier Trans-
form (DFT). The symbolic DFT is a standard DFT which treats
symbols as parameters [25]. For example, for a sequence of
N symbols s0, s1, · · · , sN−1, its 1D symbolic DFT is defined
as a sequence of linear polynomials S0, S1, · · · , SN−1, where
Sk = 1

N

∑N−1
u=0 su exp(−2π iku/N), k ∈{0, 1, · · · , N−1}, and i

is the imaginary unit. This definition of 1D symbolic DFT can
be generalized to the 2D case. We take the Hirakawa CFA [14]
(see Fig. 1(1b)) as an example. Since the Hirakawa CFA in
the RGB basis is

CFAH = 1

3

⎛

⎜
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⎜
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⎞

⎟
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we can compute its frequency structure as follows:

FH = DFT (CFAH) =
⎛

⎜
⎝

FL 0
0 F∗

C2
0 FC1
0 FC2

⎞

⎟
⎠, (1)

where R, G, and B are symbols, * means symbolic conjugate,
i.e., the coefficients of R, G, and B in F∗

C2
are all conjugate to

those in FC2 , and FL , FC1 , and FC2 refer to the luma and the

two chromas used in frequency structure, respectively, which
are given as:

⎛

⎝
FL
FC1
FC2

⎞

⎠ = 1

12

⎛

⎝
4 4 4
2 0 −2
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⎞
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This implies FC2 = 1+i
12 R+−2−2i

12 G+1+i
12 B , and hence we have

F∗
C2

= 1−i
12 R+−2+2i

12 G+1−i
12 B . Note that the rows and columns

of frequency structure are indexed by (0, 1, · · · , nr −1) and
(0, 1, · · · , nc − 1), which represent the frequency points of

2π
(

0, 1
nr

, · · · , nr −1
nr

)
and 2π

(
0, 1

nc
, · · · , nc−1

nc

)
, respectively,

where the size of the CFA pattern is nr × nc.

B. CFA Design Methods in the Frequency Domain

The frequency representation of mosaicked images also
allows us to understand the visual artifacts in demosaicked
images as the aliasing between luma and modulated chro-
mas [9]. Namely, if luma and modulated chromas overlap in
the frequency domain, some frequency components contain the
sum of luma and chromas instead of each of them separately.
Then the demosaicking algorithm can produce visual artifacts
when it recovers luma and chromas independently. Thus
we consider that these artifacts are inherent to the CFAs.
This motivates the design of CFAs by reducing the spectra
overlap between luma and modulated chromas. According to
the motivation, many CFA design methods in the frequency
domain have been presented [7], [14], [15], [26].

Inspired by the spectral characteristic analysis of Bayer
CFA [9], Hirakawa and Wolfe [14] proposed the first CFA
design method in the frequency domain. Instead of directly
using the RGB basis, they empirically chose G, R−G, and
B−G as the basis to decorrelate the image channels. Let
c(n) = (cR(n), cG(n), cB(n))T be the color pixel of the CFA
at n, where n ∈ Z

2 and Z denotes the set of integers. So it
is physically realizable, i.e., it is real, non-negative and lies
in [0, 1]. They further required that it satisfies cR(n)+cG(n)+
cB(n) = γ . Let x(n) = (xR(n), xG(n), xB(n))T denote the
color pixel of the full color image at n, xC1 = xR − xG ,
and xC2 = xB − xG . Then the noise-free mosaicked image y
would be:

y(n) = c(n)T x(n) = c(n)T Ix(n)

= c(n)T

(
1 1 0
0 1 0
0 1 1

)(
1 −1 0
0 1 0
0 −1 1

)

x(n)

=
(

cR(n)
γ

cB(n))

)T (
xC1(n)
xG(n)
xC2(n)

)

=
(

cR(n)
γ

cB(n))

)T
⎛

⎜
⎝

1 0 0
−μ1

γ
1 −μ2

γ
0 0 1

⎞

⎟
⎠

×
⎛

⎜
⎝

1 0 0
μ1

γ
1

μ2

γ
0 0 1

⎞

⎟
⎠

(
xC1(n)
xG(n)
xC2(n)

)

= (cR(n) − μ1, γ , cB(n) − μ2)

(
xC1(n)
xL(n)
xC2(n)

)

, (3)
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where xL(n) = xG(n)+ (μ1/γ )xC1(n)+ (μ2/γ )xC2(n) repre-
sent the luma, xC1 and xC2 represent the two chromas, and (·)T

denotes matrix transpose. So all the parameters are γ , μ1, μ2,
and the Fourier coefficients of the Fourier transforms of
cR and cB . They next conducted parameter search, so that
the resultant CFA is physically realizable and the chromas are
modulated far away from the luma. Minimizing the overlap
between luma and chromas is achieved by enforcing a con-
straint during parameter search that chromas should be located
at the spectrum border. They also empirically imposed that the
red-green-blue ratio in luma should be 1 : 1 : 1 or 1 : 2 : 1.
The spectrum of images mosaicked with their proposed CFA
is shown in Fig. 1(2b). We can see that the modulated chromas
are far away from the center and the horizontal and the vertical
axes, where the luma has a high spectrum density. We can also
see from Fig. 1(2a) that the modulated chromas of Bayer CFA
overlap with the luma on the horizontal and the vertical axes.

Condat [15] followed the approach of
Hirakawa and Wolfe [14]. However, he argued that for modern
cameras the robustness of a CFA to noise is more important
than to aliasing, especially in low-light conditions. So he
proposed a new CFA that is robust to both aliasing and noise
(Fig. 1(1c)). In comparison with the work of Hirakawa and
Wolfe, he used an orthonormal basis: L = (R + G + B)/

√
3,

C1 = (−R + 2G − B)/
√

6, and C2 = (R − B)/
√

2, which is
claimed to maximally decorrelate the image channels. So his
model was simplified as:

y(n) = c(n)T 1
6

⎛

⎝
2 −1 3
2 2 0
2 −1 −3

⎞

⎠ diag

⎛

⎝

√
3√
6√
2

⎞

⎠

diag

⎛

⎝
1/

√
3

1/
√

6
1/

√
2

⎞

⎠

⎛

⎝
1 1 1

−1 2 −1
1 0 −1

⎞

⎠ x(n)

= (γ /
√

3, c1(n), c2(n))
(
xL(n), xC1(n), xC2(n)

)T
, (4)

where c1(n) = (−cR(n) + 2cG(n) − cB(n)) /
√

6, c2(n) =
(cR(n) − cB(n))/

√
2, and diag(·) converts a vector to a

diagonal matrix whose j -th diagonal element is the j -th
element of the vector. Then he used a constructive approach to
manually determine all the parameters step by step. Different
from the other design methods, he selected parameters to
simultaneously maximize the minimum distance between luma
and chromas and the sensitivity of the CFA, which can reduce
the noise level in demosaicked images. In order to maximally
reduce the overlap between luma and chromas, he imposed
that the two chromas are conjugate and each of them has only
one replica. The designed 2 × 3 CFA is shown in Fig. 1(1c).
It has six distinct color components. The spectrum of his CFA
is shown in Fig. 1(2c).

Based on the frequency structure, Hao et al. [7] designed
CFAs from a new perspective. The design of CFAs leaves
many parameters to be chosen. Since the luma and the two
chromas constitute a basis, there exists an invertible conversion
between it and the RGB basis. Formally, we have the following
relationship:

(FL , FC1, FC2)
T = M (R, G, B)T, (5)

where FL , FC1 , and FC2 denote the luma and the two chromas,
respectively, R, G, and B refer to the red, green, and blue
color components, respectively, M ∈ C

3×3 is invertible and is
called the color transformation matrix, and C denotes the set of
complex numbers. In frequency selection based demosaicking,
the RGB full color image is recovered from the estimated FL ,
FC1 , and FC2 via solving (5). However, the estimations of FL ,
FC1 , and FC2 contain errors. Accordingly, one should control
the error in demosaicked images that results from the estima-
tion errors. Formally, we denote y = (�FL ,�FC1,�FC2)

T as
the estimation errors and x = (�R,�G,�B)T as the error
that results from y. Then according to (5), we have y = Mx.
Consequently, the amplification factor of estimation errors is:

‖x‖2

‖y‖2
= ‖M−1y‖2

‖y‖2
≤ max

y �=0

‖M−1y‖2

‖y‖2
= ‖M−1‖2, (6)

where M−1 is the inverse of M, ‖M−1‖2 is the spectral norm
of M−1 which is its largest singular value, and ‖x‖2 is the l2
norm of vector x. This implies that decreasing ‖M−1‖2 can
greatly enhance the numerical stability of color transforma-
tion. With the help of frequency structure, they formulated
parameter optimization as a constrained optimization problem
to maximize the numerical stability of the color transfor-
mation. Meanwhile, the problem of minimizing the aliasing
between luma and chromas is converted into a frequency
structure selection problem. For a selected frequency structure,
Hao et al. formulated the parameter optimization problem as
follows:

min
M

‖M−1‖F

s.t. c j ∈ [0, 1],
∑

j
c j = 1, j ∈ {R, G, B}, (7)

where 1 denotes the all-one matrix, cR , cG , and cB denote the
three channels of the CFA, and ‖M−1‖F is the Frobenius norm
of M−1 to approximate ‖M−1‖2. They further imposed that
M should be real, which implies that the frequency structures
cannot contain conjugate replicas of the chromas. Then they
proposed a geometric method to solve (7). Although they
provided several guidelines for manual frequency structure
choice, the computation for all the candidates still requires
immense resources for a reasonably sized CFA pattern. More-
over, the proposed geometric method needs the user to specify
the optimal triangle, which contains the origin as its inner point
and minimizes ‖M−1‖F .

III. PROPOSED AUTOMATIC CFA DESIGN METHOD

In this section, we first outline the proposed method. Then
we describe each step in detail.

A. Method Overview

As shown in Fig. 2, our CFA design process consists
of two main steps. For a given CFA pattern size, we first
perform multi-objective optimization to propose frequency
structure candidates (the dashed box in Fig. 2), where the
minimum distances between their respective frequency points
are maximized (Fig. 2(b)-2(c)) and the replicate relations
among the chromas are specified (Fig. 2(d)). Then we optimize
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parameters for each frequency structure candidate to obtain the
corresponding CFA (Fig. 2(e)). A CFA pattern size does not
always result in a unique frequency structure as well as CFA
(see Fig. 2(d) and 2(e)). So we finally output the CFA that
has the best demosaicking performance on a training image
set (Fig. 2(f)). Below we explain the two steps in detail.

For a given CFA pattern size, maximizing the minimum
distance between frequency components in the frequency
domain is equivalent to finding a frequency structure that
the minimum distance between its frequency points is max-
imized [7]. Exhaustive tests of all the feasible frequency
structures are computationally intractable even for a moderate
CFA pattern size. For example, for a 5 × 5 CFA pattern, if
we exclude the horizontal and the vertical axes of luma, the
number of different chroma position allocations is 255, and
the number of frequency structures further grows significantly.
One approach to compromise computation and optimality of
the produced CFA is to use a fast but approximate method
to discard a majority of unpromising ones. Since missed
frequency structures cannot be recovered in the subsequent
stage, it is also important to contain all the possibly optimal
ones. To account for these requirements, we formulate the gen-
eration of frequency structure candidates as a multi-objective
optimization problem. We will describe it in subsection III-B.

Similar to Hao et al. [7], for a given frequency structure
candidate, we formulate the parameter optimization as a
constrained optimization problem. However, we enhance the
computational stability of color transformation by directly
minimizing ‖M−1‖2, rather than its approximation ‖M−1‖F .
Also, we enforce that the CFA is physically realizable and
the sum across its color channels is an all-one matrix. Besides
that, we make no assumptions on frequency structure and CFA.
We will introduce our model in subsection III-C and the
solution process in the Appendix.

B. Propose Frequency Structure Candidates

For a given CFA pattern size, we argue that the minimum
distance between luma and chromas as well as between
chromas of the frequency structure should be as large as
possible. They are our first two objectives. If the given size
of a CFA pattern is larger than 2 × 2, all chromas should
not locate on the horizontal and the vertical axes of luma.
Moreover, with redundant chroma replicas, we can estimate
each chroma more accurately by fusing all its estimations
adaptively [7], [24]. So the number of chroma replicas should
also be as large as possible [7], which is our third objective.
The three objectives are in conflict and hence we cannot find
a single solution that is optimal for all of them. We propose a
multi-objective optimization approach to find an appropriately
balanced solution.

1) Multi-Objective Optimization: Multi-objective optimiza-
tion [27] refers to the simultaneous minimization or maxi-
mization of more than one objective functions. More formally,
it studies the problem as follows:

max
x

{ f1(x), f2(x), · · · , fm(x)}, s.t. x ∈ �, (8)

where we have m ≥ 2 objective functions f j and want to
maximize all the functions simultaneously, x is the decision

Fig. 3. Pareto optimal solutions of a multi-objective optimization problem
with two objectives. The blue circles are the feasible points, while the
red crosses are the Pareto optimal solutions.

variable, and � is the feasible region which can be formed by
various constraints. Note that we assume that all the objective
functions are to be maximized for simplicity. If an objective
function f j is to be minimized, it is equivalent to maximizing
the function − f j .

The objective functions can be incommensurable, i.e., in
different units. For example, in Fig. 3, f1 ∈ [0, 30] and
f2 ∈ [0, 3] have different value ranges. Also, there is only
partial ordering in the objective space, e.g., we cannot com-
pare ( f1(x1), f2(x1))

T = (3, 2.5)T with ( f1(x2), f2(x2))
T =

(2, 3)T . Furthermore, in general, there may be partial conflicts
among the objective functions, i.e., maximizing one function
can decrease the values of the others. Because of the possible
incommensurability and conflict among the objective func-
tions, it is not possible to composite a global objective function
as a weighted sum of all the objective functions, or find a
single solution that is optimal w.r.t. every objective function.
The solutions of a multi-objective optimization problem are
called Pareto optimal solutions. We state a more formal
definition in the following:

Definition 1: A decision variable x1 is said to be dominated
by x2 if f j (x1) ≤ f j (x2) for all j = 1, 2, . . . , m and fk(x1) <
fk(x2) for at least one index k.

For example, in Fig. 3, p1 is dominated by p0, and q1 and
q2 are both dominated by q0. Since f2(p0) > f2(q0) and
f1(p0) < f1(q0), p0 and q0 are not dominated by each other.

Definition 2: A decision variable x∗ ∈ � is Pareto optimal
if x∗ cannot be dominated by any variable x ∈ �.

In Fig. 3, p0 and q0 cannot be dominated by any other
feasible points. So they are both Pareto optimal to the problem.
All the Pareto optimal solutions constitute the Pareto optimal
set of the problem, e.g., {p0, q0} is the Pareto optimal set to
the multi-objective optimization problem illustrated in Fig. 3.

2) Obtain Chroma Position Candidates: Note that the only
luma is fixed at the top-left of frequency (0,0) in the fre-
quency structure (see Fig. 2(a)). So we only need to choose
the replicas of the two chromas and their positions in the
matrix to finally determine a frequency structure. As noted
before, the rows and columns of frequency structure are
indexed by (0, 1, · · · , nr − 1) and (0, 1, · · · , nc − 1), which
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represent the frequency points of 2π
(

0, 1
nr

, · · · , nr −1
nr

)
and

2π
(

0, 1
nc

, · · · , nc−1
nc

)
, respectively, where nr × nc is the CFA

pattern size. In the following discussion, we omit 2π from all
frequency points for simplicity. Since the designed CFA is real,
once the position of a chroma frequency point (nx/nc, ny/nr )
in the frequency structure is chosen, the position ((1−nx/nc)
mod 1, (1−ny/nr ) mod 1) must also be chosen [7], where
mod is the modulo operation, nx ∈ {0, 1, · · · , nc − 1}, and
ny ∈ {0, 1, · · · , nr − 1}. If the two positions are different,
we call them a conjugate position pair, otherwise we say
that the position is self-conjugate, e.g., ( 1

2 , 1
2 ), or ( 1

2 , 0).
If the matrix has m p conjugate position pairs and ms self-
conjugate positions, there are 2m p+ms −ms −1 feasible chroma
position allocations. Also, if the CFA pattern size is larger than
2 × 2, we first discard those allocations that contain chroma
positions on the horizontal and the vertical axes of luma.
Then we perform multi-objective optimization on the rest of
allocations.

More formally, the multi-objective optimization problem is:

max
x

{ f1(x), f2(x), f3(x)}
s.t. x∈ the set of feasible chroma position allocations, (9)

where f1 denotes “the minimum distance between luma
and chroma positions”, f2 denotes “the minimum distance
between chroma positions”, and f3 denotes “the number of
chroma replicas”. Since frequency structure is periodic in
both horizontal and vertical directions (please read the caption
of Fig. 1), we compute the distance between two positions
in it as follows. Suppose the two positions are (x1, y1) and
(x2, y2). Then the distances along the horizontal and the
vertical directions are dx = min(|x1 − x2|, 1 − |x1 − x2|)
and dy = min(|y1 − y2|, 1 − |y1 − y2|), respectively,
where |x | is the absolute value of the scalar x .
So the Euclidean distance between the two positions is√

d2
x + d2

y . We take the frequency structure FH in (1)
as an example. The distance between FL and FC1

is
(
min(1/2, 1 − 1/2)2 + min(2/4, 1 − 2/4)2

)1/2 =√
2/2. The distance between FL and F∗

C2
is

(
min(1/2, 1 − 1/2)2 + min(1/4, 1 − 1/4)2

)1/2 = √
5/4.

The distance between FL and FC2 is
(
min(1/2, 1 − 1/2)2 + min(3/4, 1 − 3/4)2

)1/2 = √
5/4.

So f1(FH) is min(
√

2/2,
√

5/4) = √
5/4. Similarly, we can

compute the f2(FH). Thus solving problem (9) is equivalent
to finding the Pareto optimal set from a given point set (see
Fig. 3). We use the non-dominated sorting scheme to solve
it [27]. The objective value of f1 for the Bayer CFA is 0.5.
Since f1 is more important than f2 and f3, we reject the
chroma position candidates whose objective values of f1
below 0.5.

3) Generate Frequency Structure: We generate all the fre-
quency structures according to the chroma position candidates.
For each candidate, we divide its selected positions into two
non-overlapping groups. The two position groups are for the
replicas of FC1 and FC2 , respectively. It is important to note
that FC1 and FC2 are symmetric, i.e., swapping them does
not result in a new frequency structure. Then without loss of
generality, we only assume equal or conjugate replicas of a
chroma, i.e., the replicas of a chroma C are all in {C, C∗}.
It may produce multiple frequency structures (see Fig. 2(d)).

C. Optimize Parameters

Following [7], we parameterize the complex color trans-
formation matrix M as M1 + iM2, where M1 and M2 are
the real and imaginary parts of M, respectively, and they are
both real. Then FL , FC1 , and FC2 can be linearly parame-
terized by M. We apply the inverse symbolic DFT to the
parameterized frequency structure and obtain the vectorized
CFA pattern denoted by CM1 + DM2, where C and D are
the complex coefficient matrices for M1 and M2, respectively.
Let c j be the j -th channel of the RGB CFA pattern with
a size of nr × nc, where j ∈ {R, G, B}. The vectorized
CFA pattern is (vec(cR), vec(cG), vec(cB)) with a size of
nr nc×3, where vec(·) is the operator to convert a matrix into
a vector.

We take the frequency structure of Hirakawa CFA [14] as
an example. We first write the color transformation in (5) in
more detail:
⎛

⎝
FL

FC1

FC2

⎞

⎠

=
⎛

⎜
⎝

M(1)
11 + i M(2)

11 M(1)
12 + i M(2)

12 M(1)
13 + i M(2)

13
M(1)

21 + i M(2)
21 M(1)

22 + i M(2)
22 M(1)

23 + i M(2)
23

M(1)
31 + i M(2)

31 M(1)
32 + i M(2)

32 M(1)
33 + i M(2)

33

⎞

⎟
⎠

⎛

⎝
R
G
B

⎞

⎠,

(10)

where the superscripts (1) and (2) indicate that the elements
are from M1 and M2, respectively. The conjugate of FC2 is
given as:

F∗
C2

=
(

M(1)
31 − i M(2)

31 , M(1)
32 − i M(2)

32 , M(1)
33 − i M(2)

33

)
P,

(11)

where P= (R, G, B)T . Then we substitute (10) and (11) into
the frequency structure of Hirakawa CFA shown in Fig. 1(3b).
We next apply the inverse symbolic DFT to the frequency
structure and we have the expression shown at the bottom of
this page. So the vectorized CFA pattern in the RGB basis can

⎛

⎜
⎜
⎝

((1, 1, 2)M1 + (i, i, 0)M2)P, ((1,−1,−2)M1 + (i,−i, 0)M2)P
((1,−1, 0)M1 + (i,−i, 2)M2)P, ((1, 1, 0)M1 + (i, i,−2)M2)P
((1, 1,−2)M1 + (i, i, 0)M2)P, ((1,−1, 2)M1 + (i,−i, 0)M2)P

((1,−1, 0)M1 + (i,−i,−2)M2)P, ((1, 1, 0)M1 + (i, i, 2)M2)P

⎞

⎟
⎟
⎠
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be denoted by CM1 + DM2 with a size of 8 × 3, where

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 2
1 −1 0
1 1 −2
1 −1 0
1 −1 −2
1 1 0
1 −1 2
1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i i 0
i −i 2
i i 0
i −i −2
i −i 0
i i −2
i −i 0
i i 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The produced CFA pattern in the RGB basis should be
physically realizable, i.e., CM1+DM2 is real and lies in [0, 1].
Also, the sum across color channels of CFA pattern should be
an all-one matrix, i.e., the vectorized CFA pattern satisfies
(CM1 + DM2)(1, 1, 1)T = 1. Accordingly, we propose the
following parameter optimization model:

min
M

‖M−1‖2

s.t. C	(M)+D
(M) ≥ 0, (C	(M)+D
(M))a=e, (12)

where M−1 is the inverse of M, a = (1, 1, 1)T , e = 1nr nc×1, ≥
stands for componentwise greater than or equal to, 0 denotes
the zero matrix, 1 denotes the matrix whose elements are
all 1, and 	(·) and 
(·) are the linear operators to extract the
real and the imaginary parts of a complex vector or matrix,
e.g., 	(M) = 	(M1 + iM2) = M1 and 
(M) = M2.

As noted in [7], the constraint (C	(M)+ D
(M))a = e
in (12) is equivalent to a simpler one: Ma = b, where
b = (1, 0, 0)T . So we reformulate (12) into an equivalent
one:

min
M

‖M−1‖2, s.t. C	(M)+D
(M) ≥ 0, Ma=b. (13)

In order to improve the readability, we move the details of
solving for (13) to the Appendix.

IV. EXPERIMENTS

In this section, we carry out experiments to validate the
effectiveness of our proposed CFA design method. We first
compare our parameter optimization method with those of
other CFA design methods. Then we produce a new CFA
using our design method and compare it with other CFAs. All
the experiments are performed on the commonly used Kodak
PhotoCD dataset [16].

A. Experimental Settings
1) Compared Design Methods and CFAs: We test our CFA

design method by comparing with three existing CFA design
methods in the frequency domain. They are proposed by
Hirakawa and Wolfe [14], Condat [15], and Hao et al. [7],
respectively. Since the corresponding three CFAs have been
shown to outperform the existing CFAs, we only involve the
three CFAs and the most popular Bayer CFA for comparison.

2) Frequency Selection Based Demosaicking: We briefly
describe the main steps of frequency selection based demo-
saicking mentioned in subsection II-A. The different frequency
locations of luma and modulated chromas allow us to estimate
them directly from the mosaicked image by selecting corre-
sponding frequencies [9], [15], [24], [28]. So these methods
can be viewed as demultiplexing. They first use appropriate

bandpass filters to estimate the modulated chromas. Then they
demodulate the estimations. If there exist multiple estimations
of a chroma, one can fuse them properly to obtain a more
robust one. The luma is estimated by subtracting the remodu-
lated chromas from the mosaicked image. The RGB full color
image is finally recovered using the inverse transformation
of (5).

In order to be fair, when we compare the parameter opti-
mization of all design methods, we adapt the least-square
luma-chroma demultiplexing algorithm (LSLCD) [28] to all
the compared CFAs, in which the filters are learned to min-
imize the mean-squared demosaicking error over a training
set. LSLCD was first proposed for the Bayer CFA, the source
code of which is publicly available.3 It was extended to
arbitrary regular and periodic CFAs in [29]. Note that if a
chroma has more than one replica, an adaptive method can
give a more accurate estimate of the chroma. For example,
Dubois [24] observed that in the Bayer CFA the two modulated
replicas of C2 suffer differently from the overlap between
luma and chromas (see Fig. 1(2a)), i.e., one replica mainly
overlaps with high horizontal frequencies of luma, while the
other one mainly overlaps with the high vertical frequencies.
Thus demosaicking algorithm can exploit this characteristic
to reduce the impact of spectral overlap. However, we focus
only on evaluating the effectiveness of parameter optimization
methods instead of the CFAs. So if a chroma has multiple
replicas, we simply average all its estimations. As in [29],
frequency selection based demosaicking learns the filters to
minimize the mean-squared demosaicking error over a training
set. So one needs to specify the filter size and the training
image set. Following [15], we use a 13×13 filter size and learn
the filters on all 24 images in the Kodak dataset. Accordingly,
we exclude a 13-pixel border (the filter width) to eliminate the
boundary effects.

When comparing different CFAs, we use their respective
associated demosaicking algorithms, with default parameters
set by their respective authors. These parameters have been
optimized on the Kodak dataset. For the Bayer CFA, we
use the LSLCD specified for it, where an adaptive weighting
strategy is employed [28]. For the Hirakawa CFA and the
Condat CFA, we use the demosaicking algorithm developed by
Condat [15], the source code of which is publicly available.4

For the Hao CFA, we use the code provided by the authors.
They also apply the adaptive weighting scheme [24] to com-
bine multiple estimations of a chroma. We adapt the LSLCD
to our designed CFAs. If a chroma has multiple replicas,
we simply average all its estimations. Also, we exclude
a 13-pixel border when computing CPSNR values. We want
to note that the demosaicking algorithms also highly affect
the image quality, especially the combination strategies for
CFAs that have more than one replica of a chroma [7], [24].
However, an extensive comparison of demosaicking algorithms
is out of the scope of this work.

3http://www.site.uottawa.ca/∼edubois/lslcd/.
4http://www.gipsa-lab.grenoble-inp.fr/∼laurent.condat/publications.html.
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Fig. 4. The proposed Diag7 CFA pattern. (1) is the proposed 7 × 7 diagonal stripe CFA pattern. (2)-(4) are its spectrum, frequency structure, and color
values, respectively. The notations in (2) and (3) are the same as those in Fig. 1.

TABLE II

EVALUATION OF THE NUMERICAL STABILITY OF COLOR
TRANSFORMATIONS. THREE EXISTING CFA DESIGN

METHODS ARE COMPARED WITH THE PROPOSED

ONE IN PARAMETER OPTIMIZATION. “ORIG.”
STANDS FOR “ORIGINAL”. NOTE THAT

OUR METHOD PRODUCES THE

IDENTICAL M AS THAT OF THE

CONDAT CFA [15] AND THE
HAO CFA [7], RESPECTIVELY

B. Comparison of Parameter Optimization

For a given CFA, we can determine its coefficient matrices
C and D as well as color transformation matrix M. However,
for a given frequency structure, we can only compute its
C and D. We have to use a parameter optimization method to
obtain an M. Then with the C, D, and M, we can determine
the CFA. This gives us a chance to compare with other CFA
design methods in parameter optimization.

We first compute the frequency structure of a CFA
(e.g., the Hirakawa CFA [14]) produced by an existing CFA
design method in the frequency domain, and with which we
can calculate the corresponding C and D. Then we obtain a
new M with our parameter optimization method and also a
newly designed CFA. We next compare the newly designed
CFA with the original one.

We first compare the numerical stability of color trans-
formations. The values of ‖M−1‖2 are reported in Table II.
A smaller value may indicate more numerical stability.

TABLE III

EVALUATION OF THE PROPOSED PARAMETER OPTIMIZATION METHOD ON
THE KODAK PHOTOCD DATASET. “AVG.” STANDS FOR “AVERAGE”.

THE INDIVIDUAL AND AVERAGE CPSNR VALUES ARE REPORTED.
NOTE THAT OUR NEWLY DESIGNED CFAs ARE IDENTICAL TO

THE CONDAT CFA [15] AND THE HAO CFA [7],
RESPECTIVELY. SO THEIR CPSNR VALUES

ARE THE SAME

From left to right, the three group comparisons are correspond-
ing to the Hirakawa CFA [14], the Condat CFA [15], and the
Hao CFA [7], respectively. In each group, the better value is



1802 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 4, APRIL 2016

Fig. 5. Blowups of some demosaicked images in the Kodak dataset. From top to bottom, the images are from #1, #6, #8, and #19 images of the Kodak
dataset, respectively. In each group, (a) is the scaled original image, in which the red rectangle indicates the selected patch to blow up; (b) is the ground
truth; (c) is the image demosaicked from the image mosaicked with the Bayer CFA; (d)-(g) are the images demosaicked from the images mosaicked with the
optimized CFAs. From all the four groups of images, we can clearly see that the images demosaicked from the images mosaicked with the Bayer CFA
have severe false color artifacts, while those by the optimized CFAs have better subjective quality. (1a) Scaled original image. (1b) Ground truth.
(1c) Bayer CFA [8]. (1d) Hirakawa CFA [14]. (1e) Condat CFA [15]. (1f) Hao CFA [7]. (1g) Diag7. (2a) Scaled original image. (2b) Ground truth.
(2c) Bayer CFA [8]. (2d) Hirakawa CFA [14]. (2e) Condat CFA [15]. (2f) Hao CFA [7]. (2g) Diag7. (3a) Scaled original image.
(3b) Ground truth. (3c) Bayer CFA [8]. (3d) Hirakawa CFA [14]. (3e) Condat CFA [15]. (3f) Hao CFA [7]. (3g) Diag7. (4a) Scaled original image.
(4b) Ground truth. (4c) Bayer CFA [8]. (4d) Hirakawa CFA [14]. (4e) Condat CFA [15]. (4f) Hao CFA [7]. (4g) Diag7.

in boldface. Note that the ‖M−1‖2 cannot be directly com-
pared across different CFAs since it increases with the size of
CFA pattern and the number of chroma replicas. We can see

that our new color transformation system generated from the
frequency structure of the Hirakawa CFA [14] is more stable
than that of the original one (see the first group of Table II).
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Fig. 6. Two more blowups of demosaicked images in the Kodak dataset. From top to bottom, the images are from #6 and #8 images of the Kodak dataset,
respectively. From the two groups of images, we can see that our Diag7 CFA results in similar or better visual quality as that of other CFAs. (1a) Scaled
original image. (1b) Ground truth. (1c) Bayer CFA [8]. (1d) Hirakawa CFA [14]. (1e) Condat CFA [15]. (1f) Hao CFA [7]. (1g) Diag7. (2a) Scaled original
image. (2b) Ground truth. (2c) Bayer CFA [8]. (2d) Hirakawa CFA [14]. (2e) Condat CFA [15]. (2f) Hao CFA [7]. (2g) Diag7.

Our method results in the identical M as that of the Condat
CFA [15] and the Hao CFA [7], respectively. So their values
of ‖M−1‖2 are the same (see the last two groups of Table II).
It implies that the parameters of the Condat CFA and the
Hao CFA are already optimal for their respective frequency
structures. However, we want to note that the frequency
structures of the Condat CFA and the Hao CFA do not contain
conjugate chroma replicas (see Fig. 1(3c) and (3d)), whereas
the one of the Hirakawa CFA has a conjugate chroma replica
(see Fig. 1(3b)).

Then we compare the newly designed CFAs with their
respective original ones on the Kodak dataset using the same
demosaicking algorithm. The individual and average CPSNR

values are given in Table III. The better values in each group
are in boldface. Similar to the above analysis of M, our
newly designed CFA according to the frequency structure of
the Hirakawa CFA performs better than the original one on
both individual image and the whole dataset (see the first
group of Table III). Also, our newly designed CFAs are
identical to the Condat CFA and the Hao CFA, respectively.
So they have the same CPSNR values (see the last two groups
of Table III).

C. Comparison of CFA Design

We first generate a new CFA using our design method
and then compare it with the others on the Kodak dataset.
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TABLE IV

EVALUATION OF THE PROPOSED CFA ON THE KODAK PHOTOCD
DATASET. FOUR EXISTING CFAs ARE COMPARED WITH THE

PROPOSED ONE. THE INDIVIDUAL AND AVERAGE

CPSNR VALUES ARE REPORTED

The whole process for a given CFA pattern size is demon-
strated in Fig. 2. It is worth noting that, if we specify the
CFA pattern size to 4 × 2, 3 × 2, and 4 × 4, respectively,
the produced frequency structure candidates by our proposal
strategy include those of the Hirakawa CFA [14], the Condat
CFA [15], and the Hao CFA [7]. Besides the three ones, we
check all pattern sizes that are equal to or smaller than 9 × 9.

The CFA pattern that performs the best in our experiments
is shown in Fig. 4. It is a 7 × 7 diagonal stripe CFA pattern
using optimized color components (Fig. 4(1)), which we call
the Diag7 CFA pattern. From Fig. 4(2), we can see that all
its chroma replicas are located far away from the center and
also the horizontal and the vertical axes. The Diag7 CFA
pattern has two chromas FC1 and FC2 , each of which having
only one replica (Fig. 4(3)). Accordingly, the two chromas
are conjugate, i.e., FC1 = F∗

C2
and FC2 = F∗

C1
. All the color

values of the Diag7 CFA pattern are shown in Fig. 4(4), and
the corresponding color transformation matrix M is, as shown
at the bottom of this page.

The CFAs with redundant chroma replicas do not achieve
the best performance. One possible reason is that we simply
use the average strategy to fuse all estimations of a chroma.
We take the 5 × 5 pattern size shown in Fig. 2 as an example.
Our method finally produces two CFA patterns with two chro-
mas and four CFA patterns with four chromas (see Fig. 2(e)).

The average CPSNR values of the two CFA patterns with
two chromas on the Kodak dataset are 40.00dB and 39.88dB,
respectively, while the best CFA pattern with four chromas
results in 39.15dB. On the other hand, the average CPSNR
value of the Hao CFA [7] with five chromas (see Fig. 1(3d))
is improved by 0.43dB (from 39.93dB to 40.36dB) when a
tailored combination strategy is adopted (see Table III and IV).
However, developing a combination strategy that is beneficial
to all CFAs with redundant chroma replicas is non-trivial and
out of the scope of this work. We will consider the problem
in the future.

We next investigate the demosaicking performance of our
new CFA. The individual and average CPSNR values of all
tested CFAs on the Kodak dataset are shown in Table IV.
The best values are in boldface. We can see that our
Diag7 CFA yields similar individual CPSNR values as other
CFAs and slightly outperforms the others on the whole
dataset.

We also present part of the visual comparison in Fig. 5
and 6. From Fig. 5, we can see that the visual quality
of optimized CFAs is better than that of the Bayer CFA,
especially in removing aliasing artifacts. This testifies that
reducing the spectral overlap between luma and chromas is
important for producing demosaicked images with high visual
quality. Fig. 6 further shows the perceptually superiority of
the Diag7 CFA over other three optimized CFAs.

V. CONCLUSIONS

In this paper, we present an automatic CFA design method
in the frequency domain based on the frequency structure [7].
To accomplish this, we develop a multi-objective optimization
approach to automatically rule out a majority of unpromis-
ing frequency structures. Then for each frequency structure
candidate, we present a new parameter optimization method
that is appropriate for arbitrary frequency structures, includ-
ing those with conjugate chrominance replicas. Our work
provides an automatic approach to designing CFAs that are
advantageous during the subsequent demosaicking process in
producing fewer visual artifacts. Extensive experiments on
standard test images demonstrate the superiority of our design
method.

APPENDIX A
SOLVING THE PARAMETER OPTIMIZATION MODEL

The optimization problem (13) can be solved by the alter-
nating direction method (ADM) [30]. When applying ADM
to (13), we first let C = C1 + iC2 and D = D1 + iD2,
then the constraint C	(M) + D
(M) ≥ 0 in (13) can
be written in more detail as: C1	(M) + D1
(M) ≥ 0
and C2	(M) + D2
(M) = 0. Since C1, D1, C2, and D2
are all real, the two new constraints are linear w.r.t. M,

M =
⎛

⎝
0.31316 0.34342 0.34342

0.10836 + 0.13588i −0.17171 + 0.02579i 0.06335 − 0.16167i
0.10836 − 0.13588i −0.17171 − 0.02579i 0.06335 + 0.16167i

⎞

⎠
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which is the requirement of ADM. So we rewrite (13)
as follows:

min
M

‖M−1‖2

s.t. C1	(M) + D1
(M) ≥ 0,

C2	(M) + D2
(M) = 0, Ma = b. (14)

We next introduce three auxiliary variables N1, N2, and S to
reformulate our model as follows:

min
M,N1,N2,S

‖M−1‖2 + IR+(S)

s.t. M = N1 + iN2, (N1 + iN2)a = b,

C1N1 + D1N2 = S, C2N1 + D2N2 = 0, (15)

where IR+(·) is an indicator function, i.e., IR+(y) ={
0, y ∈ R+;
+∞, otherwise.

, and R+ denotes the set of real non-

negative matrices. It should be noted that N1 and N2 are not
necessarily required to be real. This is because the frequency
structure candidates satisfy the conjugate symmetry. So if all
the constraints are met, it can guarantee that N1 and N2 are
real.

The augmented Lagrangian function of problem (15) is:

L(M, N1, N2, S, X, x, Y, Z) = ‖M−1‖2 + IR+(S)

+〈X, M − (N1 + iN2)〉 + 〈x, (N1 + iN2)a − b〉
+ 〈Y, C1N1 + D1N2 − S〉 + 〈Z, C2N1 + D2N2〉
+ β

2

(
‖M − (N1 + iN2)‖2

F + ‖(N1 + iN2)a − b‖2
2

+‖C1N1 + D1N2 − S‖2
F + ‖C2N1 + D2N2‖2

F

)
, (16)

where X, x, Y, and Z are the Lagrange multipliers, 〈·, ·〉 is the
inner product, and β > 0 is the penalty parameter which is
updated during iterations.

Then by ADM, we can solve problem (15) via the following
iterations:

Mk+1 = arg min
M

L(M, Nk
1, Nk

2, Sk, Xk, xk, Yk, Zk)

= arg min
M

‖M−1‖2 + β

2
‖M − (Nk

1 + iNk
2) + Xk/β‖2

F

= arg min
M

1

β
‖M−1‖2 + 1

2
‖M − Wk‖2

F , (17)

{Nk+1
j }2

j=1

= arg min
N1,N2

L(Mk+1, N1, N2, Sk, Xk, xk, Yk, Zk)

= arg min
N1,N2

1

2
‖Mk+1 − (N1 + iN2) + Xk/β‖2

F

+ 1

2
‖(N1 + iN2)a − b + xk/β‖2

2

+1

2
‖C1N1 + D1N2 − Sk + Yk/β‖2

F

+1

2
‖C2N1 + D2N2 + Zk/β‖2

F , (18)

Sk+1 = arg min
S

L(Mk+1, Nk+1
1 , Nk+1

2 , S, Xk, xk, Yk, Zk)

= arg min
S

IR+(S) + β

2
‖C1Nk+1

1 + D1Nk+1
2

− S + Yk/β‖2
F

= max(0,	(C1Nk+1
1 + D1Nk+1

2 + Yk/β)), (19)

Xk+1 = Xk + β(Mk+1 − (Nk+1
1 + iNk+1

2 )), (20)

xk+1 = xk + β((Nk+1
1 + iNk+1

2 )a − b), (21)

Yk+1 = Yk + β(C1Nk+1
1 + D1Nk+1

2 − Sk+1), (22)

Zk+1 = Zk + β(C2Nk+1
1 + D2Nk+1

2 ), (23)

where Wk =(Nk
1+iNk

2)−Xk/β in (17).
The solution to problem (17) is given by Theorem 1.

We provide the proof of Theorem 1 in the Supplementary
Material.

Theorem 1: The solution to problem (17) is:

Mk+1 = Uk�k+1(Vk)H , (24)

where Uk���k(Vk)H is the SVD of Wk , Uk and Vk are unitary
matrices, ���k = diag(λλλk), in which diag(y) converts the vector
y into a diagonal matrix whose j -th diagonal element is y j ,
λλλk = (λk

1, λ
k
2, λ

k
3)

T is the real vector of singular values of Wk

and satisfies λk
1 ≥ λk

2 ≥ λk
3 > 0, and �k+1 = diag(σσσ k+1),

in which σσσ k+1 = (σ k+1
1 , σ k+1

2 , σ k+1
3 )T is the solution to the

following problem:

min
σ1≥σ2≥σ3>0

1

βσ3
+ 1

2

∑3

j=1
(σ j − λk

j )
2. (25)

Problem (18) has a closed-form solution and we show the
solution process as follows. Let E =

(
N1
N2

)
in (18), then the

objective function of (18) is:

F(E) = 1

2

∥
∥
∥
∥Mk+1 − (I, iI)E + Xk

β

∥
∥
∥
∥

2

F

+ 1

2

∥
∥
∥
∥(I, iI)Ea − b + xk

β

∥
∥
∥
∥

2

2

+ 1

2
‖(C1, D1)E − Sk + Yk/β‖2

F

+ 1

2
‖(C2, D2)E + Zk/β‖2

F . (26)

It is equivalent to the following function:

f (vec(E))

= 1

2
‖A1vec(E) − bk

1‖2
2 + 1

2
‖A2vec(E) − bk

2‖2
2

+ 1

2
‖A3vec(E) − bk

3‖2
2 + 1

2
‖A4vec(E) − bk

4‖2
2, (27)

where A1 = I ⊗ (I, iI), A2 = aT ⊗ (I, iI), A3 =
I ⊗ (C1, D1), A4 = I ⊗ (C2, D2), bk

1 = AH
1 vec(Mk+1 +

Xk/β), bk
2 = AH

2 (b − xk/β), bk
3 = AH

3 vec(Sk − Yk/β), bk
4 =

AH
4 vec(−Zk/β), ⊗ denotes Kronecker product, I ∈ R

3×3

is the identity matrix, yT and yH denote the transpose and
conjugate transpose of y, respectively, and vec(M) is the
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Algorithm 1 ADM Algorithm for Problem (14)

vectorization of M. Set ∂ f
∂vec(E) = 0, we have the solution

to (27) as follows:

vec(Ek+1) = vec

(
Nk+1

1

Nk+1
2

)

= G−1(bk
1+bk

2+bk
3+bk

4), (28)

where G = AH
1 A1+AH

2 A2+AH
3 A3+AH

4 A4.
To accelerate the convergence of the algorithm, we use

the following adaptive updating strategy for the penalty
parameter β [30]:

βk+1 = min(βmax, β
kρ), (29)

where βmax is an upper bound of {βk}. The value of ρ is
defined as

ρ =
{

ρ0, if βkαk <ε1,

1, otherwise,
(30)

where ρ0 ≥ 1 is a constant and αk = max{‖Mk+1 −
Mk‖∞, ‖Nk+1

1 − Nk
1‖∞, ‖Nk+1

2 − Nk
2‖∞, ‖Sk+1 − Sk‖∞}. The

stopping criteria are:

βkαk < ε1 (31)

and

max{‖Mk+1 − Nk+1
1 − iNk+1

2 ‖∞, ‖(Nk+1
1 +iNk+1

2 )a − b‖∞,

‖C1Nk+1
1 +D1Nk+1

2 −Sk+1‖∞, ‖C2Nk+1
1 +D2Nk+1

2 ‖∞}<ε2.

(32)

Problem (14) is nonconvex w.r.t. M in its entire domain.
However, it is convex in each of eight convex cones, which
are identified by the following interior point set:

� = {diag((1, 1, 1)T ), diag((1, 1,−1)T ), diag((1,−1, 1)T ),

diag((1,−1,−1)T ), diag((−1, 1, 1)T ), diag((−1, 1,−1)T ),

diag((−1,−1, 1)T ), diag((−1,−1,−1)T )}. (33)

The optimization in each cone can simply be achieved by
initializing M with an interior point of the cone.

We summarize the whole solution process of problem (14)
in Algorithm 1.
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