Supplementary Material of

"Automatic Design of Color Filter Arrays in The Frequency Domain"

Chenyan Bai, Jia Li, Zhouchen Lin, and Jian Yu

In this supplementary material, we prove the Theorem 1 which shows the solution to the following problem:

$$
\begin{align*}
\mathbf{M}^{k+1} & =\underset{\mathbf{M}}{\operatorname{argmin}} \mathcal{L}\left(\mathbf{M}, \mathbf{N}_{1}^{k}, \mathbf{N}_{2}^{k}, \mathbf{S}^{k}, \mathbf{X}^{k}, \mathbf{x}^{k}, \mathbf{Y}^{k}, \mathbf{Z}^{k}\right) \\
& =\underset{\mathbf{M}}{\operatorname{argmin}}\left\|\mathbf{M}^{-1}\right\|_{2}+\frac{\beta}{2}\left\|\mathbf{M}-\left(\mathbf{N}_{1}^{k}+i \mathbf{N}_{2}^{k}\right)+\mathbf{X}^{k} / \beta\right\|_{F}^{2} \tag{1}\\
& =\underset{\mathbf{M}}{\operatorname{argmin}} \frac{1}{\beta}\left\|\mathbf{M}^{-1}\right\|_{2}+\frac{1}{2}\left\|\mathbf{M}-\mathbf{W}^{k}\right\|_{F}^{2} .
\end{align*}
$$

It is problem (17) in the main article.
Theorem 1. The solution to problem (1) is:

$$
\begin{equation*}
\mathbf{M}^{k+1}=\mathbf{U}^{k} \boldsymbol{\Sigma}^{k+1}\left(\mathbf{V}^{k}\right)^{H} \tag{2}
\end{equation*}
$$

where $\mathbf{U}^{k} \boldsymbol{\Lambda}^{k}\left(\mathbf{V}^{k}\right)^{H}$ is the SVD of $\mathbf{W}^{k}, \mathbf{U}^{k}$ and \mathbf{V}^{k} are unitary matrices, $\boldsymbol{\Lambda}^{k}=\operatorname{diag}\left(\boldsymbol{\lambda}^{k}\right)$, in which $\operatorname{diag}(\mathbf{y})$ converts the vector \mathbf{y} into a diagonal matrix whose j-th diagonal element is $\mathbf{y}_{j}, \boldsymbol{\lambda}^{k}=\left(\lambda_{1}^{k}, \lambda_{2}^{k}, \lambda_{3}^{k}\right)^{T}$ is the real vector of singular values of \mathbf{W}^{k} and satisfies $\lambda_{1}^{k} \geq \lambda_{2}^{k} \geq \lambda_{3}^{k}>0$, and $\boldsymbol{\Sigma}^{k+1}=\operatorname{diag}\left(\boldsymbol{\sigma}^{k+1}\right)$, in which $\boldsymbol{\sigma}^{k+1}=\left(\sigma_{1}^{k+1}, \sigma_{2}^{k+1}, \sigma_{3}^{k+1}\right)^{T}$ is the solution to the following problem:

$$
\begin{equation*}
\min _{\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}>0} \frac{1}{\beta \sigma_{3}}+\frac{1}{2} \sum_{j=1}^{3}\left(\sigma_{j}-\lambda_{j}^{k}\right)^{2} . \tag{3}
\end{equation*}
$$

Before we prove it, we first quote the von Neumann's inequality [1]: Suppose A and \mathbf{B} are $m \times n$ matrices. Then $\langle\mathbf{A}, \mathbf{B}\rangle \leq \sum_{j} \delta_{j}(\mathbf{A}) \delta_{j}(\mathbf{B})$, where $\delta_{j}(\mathbf{B})$ is the j-th largest singular value of \mathbf{B}. The equality holds when the matrices of left and right singular vectors of \mathbf{A} are the same as those of \mathbf{B}.

Proof.

$$
\begin{aligned}
& \frac{1}{\beta}\left\|\mathbf{M}^{-1}\right\|_{2}+\frac{1}{2}\left\|\mathbf{M}-\mathbf{W}^{k}\right\|_{F}^{2} \\
& =\frac{1}{\beta \delta_{3}(\mathbf{M})}+\frac{1}{2}\left(\|\mathbf{M}\|_{F}^{2}-2\left\langle\mathbf{M}, \mathbf{W}^{k}\right\rangle+\left\|\mathbf{W}^{k}\right\|_{F}^{2}\right) \\
& =\frac{1}{\beta \delta_{3}(\mathbf{M})}+\frac{1}{2}\left(\sum_{j=1}^{3} \delta_{j}(\mathbf{M})-2\left\langle\mathbf{M}, \mathbf{W}^{k}\right\rangle+\sum_{j=1}^{3} \delta_{j}\left(\mathbf{W}^{k}\right)\right) \\
& \geq \frac{1}{\beta \delta_{3}(\mathbf{M})}+\frac{1}{2} \sum_{j=1}^{3}\left(\delta_{j}(\mathbf{M})-2 \delta_{j}(\mathbf{M}) \delta_{j}\left(\mathbf{W}^{k}\right)+\delta_{j}\left(\mathbf{W}^{k}\right)\right) \\
& =\frac{1}{\beta \delta_{3}(\mathbf{M})}+\frac{1}{2} \sum_{j=1}^{3}\left(\delta_{j}(\mathbf{M})-\delta_{j}\left(\mathbf{W}^{k}\right)\right)^{2}
\end{aligned}
$$

According to the von Neumann's inequality, the equality can hold when the matrices of left and right singular vectors of \mathbf{M} are the same as those of \mathbf{W}^{k}. Thus the theorem is proved.

So by Theorem 1 the solving for \mathbf{M}^{k+1} in problem (1) is converted into that for $\boldsymbol{\sigma}^{k+1}$ in (3), which is convex. In order to facilitate the presentation and calculation, we drop the superscript k of $\boldsymbol{\lambda}$ and reformulate (3) as:

$$
\begin{equation*}
\min _{\boldsymbol{\sigma}} \frac{1}{\beta \sigma_{3}}+\frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\lambda}\|_{2}^{2}, \text { s.t. } \mathbf{T} \boldsymbol{\sigma} \geq \mathbf{0} \tag{4}
\end{equation*}
$$

where $\mathbf{T}=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$.

When applying ADM to (4), we first introduce auxiliary variables $\boldsymbol{\tau}$ and φ and rewrite it as:

$$
\begin{equation*}
\min _{\boldsymbol{\sigma}, \boldsymbol{\tau}, \varphi} \frac{1}{\beta \varphi}+\frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\lambda}\|_{2}^{2}+\mathcal{I}_{\mathbb{R}_{+}}(\boldsymbol{\tau}), \text { s.t. } \mathbf{T} \boldsymbol{\sigma}=\boldsymbol{\tau}, \varphi=\sigma_{3} \tag{5}
\end{equation*}
$$

The augmented Lagrangian function of (5) is:

$$
\begin{equation*}
\mathcal{L}_{\sigma}(\boldsymbol{\sigma}, \boldsymbol{\tau}, \varphi, \mathbf{u}, v)=\frac{1}{\beta \varphi}+\frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\lambda}\|_{2}^{2}+\mathcal{I}_{\mathbb{R}_{+}}(\boldsymbol{\tau})+\langle\mathbf{u}, \mathbf{T} \boldsymbol{\sigma}-\boldsymbol{\tau}\rangle+\left\langle v, \varphi-\sigma_{3}\right\rangle+\frac{\kappa}{2}\|\mathbf{T} \boldsymbol{\sigma}-\boldsymbol{\tau}\|_{2}^{2}+\frac{\kappa}{2}\left(\varphi-\sigma_{3}\right)^{2}, \tag{6}
\end{equation*}
$$

where \mathbf{u} and v are the Lagrange multipliers, and $\kappa>0$ is the penalty parameter which is fixed during the iterations.
Then by ADM problem (5) can be solved via the following iterations:

$$
\begin{align*}
\boldsymbol{\sigma}^{t+1} & =\underset{\boldsymbol{\sigma}}{\operatorname{argmin}} \mathcal{L}_{\sigma}\left(\boldsymbol{\sigma}, \boldsymbol{\tau}^{t}, \varphi^{t}, \mathbf{u}^{t}, v^{t}\right) \\
& =\underset{\boldsymbol{\sigma}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{\sigma}-\boldsymbol{\lambda}\|_{2}^{2}+\frac{\kappa}{2}\left\|\mathbf{T} \boldsymbol{\sigma}-\boldsymbol{\tau}^{t}+\mathbf{u}^{t} / \kappa\right\|_{2}^{2}+\frac{\kappa}{2}\left(\varphi^{t}-\mathbf{d}^{T} \boldsymbol{\sigma}+v^{t} / \kappa\right)^{2} \tag{7}\\
& =\mathbf{Q}^{-1}\left(\boldsymbol{\lambda}+\mathbf{T}^{T}\left(\kappa \boldsymbol{\tau}^{t}-\mathbf{u}^{t}\right)+\mathbf{d}\left(\kappa \varphi^{t}+v^{t}\right)\right), \\
\boldsymbol{\tau}^{t+1} & =\underset{\boldsymbol{\tau}}{\operatorname{argmin}} \mathcal{L}_{\sigma}\left(\boldsymbol{\sigma}^{t+1}, \boldsymbol{\tau}, \varphi^{t}, \mathbf{u}^{t}, v^{t}\right) \\
& =\underset{\boldsymbol{\tau}}{\operatorname{argmin}} \mathcal{I}_{\mathbb{R}_{+}}(\boldsymbol{\tau})+\frac{\kappa}{2}\left\|\mathbf{T} \boldsymbol{\sigma}^{t+1}-\boldsymbol{\tau}+\mathbf{u}^{t} / \kappa\right\|_{2}^{2} \tag{8}\\
& =\underset{\varphi}{\max }\left(\mathbf{0}, \mathbf{T} \boldsymbol{\sigma}^{t+1}+\mathbf{u}^{t} / \kappa\right), \\
\varphi^{t+1} & =\underset{\varphi}{\operatorname{argmin}} \mathcal{L}_{\sigma}\left(\boldsymbol{\sigma}^{t+1}, \boldsymbol{\tau}^{t+1}, \varphi, \mathbf{u}^{t}, v^{t}\right) \\
& =\underset{\varphi}{\operatorname{argmin}} \frac{1}{\beta \varphi}+\frac{\kappa}{2}\left(\varphi-\sigma_{3}^{t+1}+v^{t} / \kappa\right)^{2}, \tag{9}\\
\mathbf{u}^{t+1} & =\mathbf{u}^{t}+\kappa\left(\mathbf{T} \boldsymbol{\sigma}^{t+1}-\boldsymbol{\tau}^{t+1}\right), \tag{10}\\
v^{t+1} & =v^{t}+\kappa\left(\varphi^{t+1}-\sigma_{3}^{t+1}\right), \tag{11}
\end{align*}
$$

where $\mathbf{Q}=\mathbf{I}+\kappa \mathbf{T}^{T} \mathbf{T}+\kappa \mathbf{d d}^{T}, \mathbf{d}=(0,0,1)^{T}$, and $\mathbf{I} \in \mathbb{R}^{3 \times 3}$ is the identity matrix.
Let $g^{t+1}=\sigma_{3}^{t+1}-v^{t} / \kappa$ in (9), then we have:

$$
\begin{equation*}
\varphi^{t+1}=\underset{\varphi>0}{\operatorname{argmin}} q(\varphi)=\frac{1}{\beta \varphi}+\frac{\kappa}{2}\left(\varphi-g^{t+1}\right)^{2} . \tag{12}
\end{equation*}
$$

Since $q(\varphi)$ is differentiable w.r.t. φ on the set of positive real numbers, φ^{t+1} is to be among the positive real critical points of $q(\varphi)$, which are the positive real roots of the cubic equation $\varphi^{3}-g^{t+1} \varphi^{2}-1 /(\beta \kappa)=0$. It has a closed-form solution and can be computed by the cubic formula.

The stopping criteria are:

$$
\begin{gather*}
\max \left\{\left\|\boldsymbol{\sigma}^{t+1}-\boldsymbol{\sigma}^{t}\right\|_{\infty},\left\|\boldsymbol{\tau}^{t+1}-\boldsymbol{\tau}^{t}\right\|_{\infty},\left\|\varphi^{t+1}-\varphi^{t}\right\|_{\infty}\right\}<\varepsilon_{3} \tag{13}\\
\text { and } \max \left\{\left\|\mathbf{T} \boldsymbol{\sigma}^{t+1}-\boldsymbol{\tau}^{t+1}\right\|_{\infty},\left\|\varphi^{t+1}-\sigma_{3}^{t+1}\right\|_{\infty}\right\}<\varepsilon_{4} . \tag{14}
\end{gather*}
$$

We summarize the whole solution process of problem (5) in Algorithm 1.

```
Algorithm 1 The ADM algorithm for problem (5)
Input: \(\boldsymbol{\lambda}, \beta, \mathbf{T}, \kappa=1, \varepsilon_{3}=10^{-10}\), and \(\varepsilon_{4}=10^{-10}\).
    Initialize: \(\boldsymbol{\tau}=\mathbf{0}, \varphi=0, \mathbf{u}=\mathbf{0}, v=0, t=0\).
    while the stop conditions (13) and (14) are not met do
        fix the others and update \(\boldsymbol{\sigma}\) by (7).
        fix the others and update \(\boldsymbol{\tau}\) by (8).
        fix the others and update \(\varphi\) by (9).
        update the multipliers \(\mathbf{u}\) and \(v\) by (10) and (11).
        \(t \leftarrow t+1\).
    end while
Output: \(\sigma\).
```


References

[1] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

