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In this supplementary material, we prove the Theorem 1 which shows the solution to the following problem:
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It is problem (17) in the main article.

Theorem 1. The solution to problem (1) is:

Mk+1 = UkΣk+1(Vk)H , (2)

where UkΛΛΛk(Vk)H is the SVD of Wk, Uk and Vk are unitary matrices, ΛΛΛk = diag(λλλk), in which diag(y) converts the
vector y into a diagonal matrix whose j-th diagonal element is yj, λλλ
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Before we prove it, we first quote the von Neumann’s inequality [1]: Suppose A and B are m × n matrices. Then
〈A,B〉 ≤

∑
j δj(A)δj(B), where δj(B) is the j-th largest singular value of B. The equality holds when the matrices of

left and right singular vectors of A are the same as those of B.
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According to the von Neumann’s inequality, the equality can hold when the matrices of left and right singular vectors of
M are the same as those of Wk. Thus the theorem is proved.

So by Theorem 1 the solving for Mk+1 in problem (1) is converted into that for σσσk+1 in (3), which is convex. In order
to facilitate the presentation and calculation, we drop the superscript k of λλλ and reformulate (3) as:
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When applying ADM to (4), we first introduce auxiliary variables τττ and ϕ and rewrite it as:
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where u and v are the Lagrange multipliers, and κ > 0 is the penalty parameter which is fixed during the iterations.
Then by ADM problem (5) can be solved via the following iterations:
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ut+1 = ut + κ(Tσσσt+1 − τττ t+1), (10)

vt+1 =vt + κ(ϕt+1 − σt+1
3 ), (11)

where Q = I+κTTT+κddT , d = (0, 0, 1)T , and I ∈ R3×3 is the identity matrix.
Let gt+1 =σt+1

3 −vt/κ in (9), then we have:

ϕt+1 = argmin
ϕ>0

q(ϕ) =
1

βϕ
+
κ

2
(ϕ− gt+1)2. (12)

Since q(ϕ) is differentiable w.r.t. ϕ on the set of positive real numbers, ϕt+1 is to be among the positive real critical
points of q(ϕ), which are the positive real roots of the cubic equation ϕ3 − gt+1ϕ2 − 1/(βκ) = 0. It has a closed-form
solution and can be computed by the cubic formula.

The stopping criteria are:

max{‖σσσt+1−σσσt‖∞, ‖τττ t+1−τττ t‖∞, ‖ϕt+1−ϕt‖∞}<ε3 (13)

and max{‖Tσσσt+1−τττ t+1‖∞, ‖ϕt+1− σt+1
3 ‖∞}<ε4. (14)

We summarize the whole solution process of problem (5) in Algorithm 1.

Algorithm 1 The ADM algorithm for problem (5)

Input: λλλ, β, T, κ = 1, ε3 = 10−10, and ε4 = 10−10.
1: Initialize: τττ = 0, ϕ = 0, u = 0, v = 0, t = 0.
2: while the stop conditions (13) and (14) are not met do
3: fix the others and update σσσ by (7).
4: fix the others and update τττ by (8).
5: fix the others and update ϕ by (9).
6: update the multipliers u and v by (10) and (11).
7: t← t+ 1.
8: end while

Output: σσσ.
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