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Automatic Design of High-Sensitivity Color
Filter Arrays With Panchromatic Pixels

Jia Li, Chenyan Bai, Zhouchen Lin, Senior Member, IEEE, and Jian Yu

Abstract— In most of existing digital cameras, color images
have to be reconstructed from raw images, which only have one
color sensed at each pixel, as their imaging sensors are covered
by color filter arrays (CFAs). At each pixel, a CFA usually allows
only a portion of the light spectrum to pass through, and thereby
reduces the light sensitivity of pixels. To address this issue, previ-
ous works have explored adding panchromatic pixels into CFAs.
However, almost all existing methods assign panchromatic pixels
empirically, making the designed CFAs prone to aliasing artifacts.
In this paper, based on a mathematical model, we propose a
fully automatic approach to designing high-sensitivity CFAs using
panchromatic pixels. By the frequency structure representation
of CFAs, we formulate high-sensitivity CFA design as a con-
tinuous multi-objective optimization problem, where robustness
to aliasing artifacts and percentage of panchromatic pixels are
simultaneously maximized. We analyze the characteristics of our
new formulation. According to the analysis, we develop a new
method to propose frequency structure candidates, which can
produce CFAs that reach a desired percentage of panchromatic
pixels. Then for each candidate, we optimize parameters to obtain
the final CFA, which is an appropriately balanced solution to
the multi-objective optimization problem. We formulate the two
design procedures as constrained optimization problems and
solve them using the alternating direction method. Extensive
experiments confirm the advantage of the proposed method in
both low-light and normal-light conditions.

Index Terms— Color filter array (CFA), demosaicking,
high-sensitivity, panchromatic pixels, aliasing, continuous multi-
objective optimization, alternating direction method (ADM).
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I. INTRODUCTION

MOST digital cameras produce color images by using
a single sensor covered by a color filter array (CFA).

A CFA has the same size as the sensor and usually allows
only one color spectrum to pass through at each pixel.
So every pixel of the images obtained with a CFA has only
one color component. Such images are called raw images.
Since color images contain at least three color components
(e.g., red (R), green (G), and blue (B)) at each pixel, demo-
saicking algorithms are needed to reconstruct color images
from raw images [1]–[3]. Accordingly, both the CFA and
the demosaicking algorithm are crucial to the quality of the
reconstructed color images. Instead of developing sophisti-
cated demosaicking algorithms, in this paper we concentrate
on CFA design. We only consider periodic CFAs defined on
the square lattice, in which the minimum periodic arrays are
called CFA patterns. For non-periodic CFAs, we refer the
readers to [4].

The Bayer CFA [5] is the most widely used CFA in the
consumer market. As shown in Fig. 1(1a), it is a 2 × 2 CFA
pattern and has twice green components as red and blue ones,
which is based on the fact that human visual system (HVS)
is more sensitive to green light. Despite the popularity, it
has two fundamental limitations. First, spectral characteristic
analysis [14] shows that the chrominance components (chroma
for short) of the raw images by Bayer CFA locate on the
horizontal and the vertical axes, where the luminance com-
ponent (luma for short) has a high density (see Fig. 1(2a)).
So the aliasing artifacts resulting from spectral overlap are
inevitable. Since imaging with a CFA is a sampling process,
the robustness to aliasing artifacts is a crucial criterion in
CFA design. This criterion has been well established by the
design of CFAs in the frequency domain [12], [15], [16].
It is important to note that the luma and chromas used
in this paper, resulting from raw images, are not directly
related to the usual definition of luma and chromas used in
image and video processing (e.g., YCrCb or YIQ). In the
frequency domain, a raw image by a CFA can be interpreted
as the sum of a non-subsampled component at the baseband
and multiple subsampled replicas of components at the high
frequency bands, where the non-subsampled component is
called luma and the subsampled ones are called chromas.
We show the spectra of raw images by six existing CFAs in
the second row of Fig. 1, where the luma and chromas are
denoted by the black and the white dashed circles, respectively.
Moreover, all the frequency information of raw images by a
CFA can be recorded by a matrix called frequency structure
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Fig. 1. Six existing CFA patterns and their corresponding spectra and frequency structures. The first row are the (a) Bayer CFA [5], (b) Compton CFA [6],
(c) Kumar CFA [7], (d) Honda CFA [8], (e) Wang CFA [9], and (f) Chakrabarti CFA [10], respectively. The sum across color channels of every CFA is
normalized to be an all-one matrix. In particular, the three color values of a panchromatic pixel are all 1/3. The second row are the average spectra of all raw
images from the Kodak dataset [11] whose corresponding CFAs are in the first row. From the second row, we can clearly see that the luminance spectrum is
located in the center and on the horizontal and the vertical axes, which is denoted by the black dashed circle. The chrominance spectra are denoted by the
white dashed circles. The third row are the corresponding frequency structures [12] of CFAs in the first row, which record the spectral components and their
positions in the second row. As noted in [13], the basebands are placed at the center by convention in the second row, but all the Discrete Fourier Transform
(DFT) spectra are periodic in both horizontal and vertical directions. However, the frequency origin (0, 0) of every frequency structure in the third row is at
the top-left entry of the matrix. Images in this paper are best viewed on screen!

(see the third row of Fig. 1), which leads to the frequency-
structure-based CFA design [12]. Details on this issue are
provided in subsection II-A. The second limitation of the
Bayer CFA is that it blocks roughly two-thirds of the inci-
dent light [7], [8], [10]. So color cameras with the Bayer
CFA are significantly slower than their grayscale counterparts,
making the obtained raw images blurrier when capturing in the
presence of camera or object movements. Also, the significant
loss of light limits the ability of Bayer CFA in trading off
noise, exposure time, and aperture size, especially in low-light
conditions.

In recent years, alleviating the second shortcoming of
Bayer CFA has been an attractive topic. Many color image
enhancement algorithms for deblurring [17]–[20] and denois-
ing [21]–[24] of low-light scenes have been presented. There
are also hardware design approaches [25]–[28]. Our work
essentially belongs to this category. But our goal is to
design high light-sensitivity CFAs without sacrificing color
fidelity. Actually, this problem has been studied by some
researchers [6]–[10] by including panchromatic (P) pixels in
CFAs. As panchromatic pixels do not block the visible light,
a larger percentage of panchromatic pixels implies a higher
sensitivity of the CFA. More importantly, the implementation
of a CFA with panchromatic pixels is practicable, which has
been discussed in detail [27].

However, most high-sensitivity CFAs assign panchro-
matic pixels empirically. For example, Compton and
Hamilton, Jr., [6] and Kumar et al. [7] proposed two sim-
ilar CFAs, both of which include 50% panchromatic pixels
(Fig. 1 (1b) and (1c)). The two CFAs were shown to perform

better than the Bayer CFA in capturing under low light, reduc-
ing motion blur, and decreasing noise level. Honda et al. [8]
presented a CFA with 50% panchromatic pixels (Fig. 1(1d)).
In low-light conditions, their CFA was demonstrated to
produce higher signal-to-noise ratio (SNR) than the Bayer
CFA does. However, these high-sensitivity CFAs are prone
to aliasing artifacts. From the spectra of raw images by these
CFAs shown in Fig. 1 (2b)-(2d), we can see that the chromas
and luma overlap on the horizontal and the vertical axes.

There are some systematic methods to assign panchromatic
pixels. Motivated by the geometric CFA design method in [12],
Wang et al. [9] proposed a new high-sensitivity CFA, which
is also robust to aliasing artifacts. They first empirically
specified a good frequency structure. Then they used the
geometric method to optimize parameters with a constraint
that the color components of the CFA can only be R, G,
B, and P. The designed CFA was shown to outperform the
Compton CFA [6] on the Kodak dataset [11]. Their CFA and
its corresponding spectrum are shown in Fig. 1 (1e) and (2e),
respectively. We can see that it includes 40% panchromatic
pixels and has no spectral overlap. However, they did not
give details of generating the panchromatic pixels, and the
geometric design method did not limit the used color com-
ponents [12]. Moreover, as shown in Fig. 2 (b)-(e), their
specified frequency structure can produce four different per-
centages of panchromatic pixels, which correspond to different
trade-offs between robustness to aliasing artifacts and light
sensitivity. This also needs to be treated in CFA design.
Additionally, their frequency structure selection and parame-
ter optimization both require human involvement [12], [13].
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Inspired by the success in inpainting and colorization,
Chakrabarti et al. [10] co-designed the CFA with panchromatic
pixels and the reconstruction algorithm. In their CFA, the non-
panchromatic pixels account for a low percentage (about 11%)
and concentrate in the center, which are surrounded by
panchromatic pixels (Fig. 1(1f)). Consequently, their recon-
struction algorithm first inpainted the missing panchromatic
values at the non-panchromatic pixels. Then it estimated
color information from the non-panchromatic pixels and next
colored the panchromatic pixels. Their approach was shown
to outperform the Bayer CFA demosaicked by the directional
LMMSE algorithm [29] in reducing noise and aliasing arti-
facts under low light. However, they directly place a 2 × 2
Bayer CFA pattern in the center of their 6 × 6 CFA pattern
(see Fig. 1(1f)). From the corresponding spectrum shown
in Fig. 1(2f), we can see that there exists severe spectral
overlap.

Recently, based on the frequency structure, Bai et al. [13]
proposed a new CFA design method in the frequency domain,
which is fully automatic. However, like all existing spectral
design methods [12], [15], [16], it only considers reducing
aliasing artifacts and neglects enhancing light sensitivity with
panchromatic pixels. In this paper, we extend the method pre-
sented in [13] to design high-sensitivity CFAs using panchro-
matic pixels, which is more challenging than the traditional
CFA design. First, it should still enhance the robustness to
aliasing artifacts. However, traditional CFA design optimizes
parameters without constraining all the color components used,
while high-sensitivity CFA design needs to use panchromatic
pixels although other color components are still unconstrained.
Second, the three color values of a panchromatic pixel are
all 1/3, which should be precisely generated. However, the
locations of panchromatic pixels are unknown apriori. Third,
the percentage of panchromatic pixels should be considered
in the design (actually, it should be above a given threshold).
This is because it determines the trade-off between light
sensitivity and color fidelity. In order to handle these issues,
we formulate high-sensitivity CFA design as a continuous
multi-objective optimization problem. The two objectives are
the robustness to aliasing artifacts and the percentage of
panchromatic pixels, which conflict with each other. Namely,
optimizing one objective can make the other worse, e.g., the
all-panchromatic CFA achieves the highest sensitivity at the
expense of losing all color information. In general, solving
continuous multi-objective optimization is challenging when
there exists conflict among objectives [30]. However, we show
that the key property making our formulation tractable is the
finite discrete range of one objective function. According to
the analysis, we propose a new high-sensitivity CFA design
method, which consists of two steps, frequency structure
selection and parameter optimization.

The contributions of this paper are:
• Based on the frequency structure representation of CFAs,

we formulate high-sensitivity CFA design with panchro-
matic pixels as a continuous multi-objective optimization
problem. To the best of our knowledge, it is the first
panchromatic pixel assignment method with a mathemat-
ical model, which is also fully automatic.

TABLE I

SUMMARY OF THE MAIN NOTATIONS USED IN THIS PAPER

• We demonstrate and analyze the challenge of solving
the new formulation, which leads to our new parame-
ter optimization method for high-sensitivity CFAs. Our
parameter optimization method is flexible for including a
constraint that the produced CFA should achieve a given
percentage of panchromatic pixels.

• We develop a new approach to propose frequency
structure candidates, which discards the frequency struc-
tures whose corresponding CFAs cannot reach a given
percentage of panchromatic pixels. This guarantees that
every candidate has desired light sensitivity. The subse-
quent parameter optimization then minimizes the aliasing
artifacts.

The rest of the paper is organized as follows. In Section II,
we describe our multi-objective optimization formulation for
designing high-sensitivity CFAs with panchromatic pixels.
Then we introduce our high-sensitivity CFA design method
in Section III. In Section IV, we conduct experiments to
test our design method. Finally, we conclude the paper
in Section V.

II. MULTI-OBJECTIVE OPTIMIZATION FORMULATION

In this section, we first briefly introduce the frequency
structure, as we will rely on it to design CFAs. Then we give
and analyze our multi-objective optimization formulation for
designing high-sensitivity CFAs. We use upper and lower case
boldface letters to denote matrices and vectors, respectively,
where vectors are all column ones. Scalars are denoted by
lower case letters. To enable readers to quickly refer to the
notations used throughout the paper, we summarize the main
notations in Table I.
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Fig. 2. The characteristics of the frequency structure specified by Wang et al. [9]. (a) is its coefficient matrices. (b)-(e) are four CFAs produced by the
frequency structure. They are optimal CFAs with 0%, 20%, 40%, and 60% panchromatic pixels, respectively. The corresponding values of ‖M−1‖2 are 3.05,
3.16, 3.51, and 7.53, respectively. (f) is the correspondence between the obtained number of non-panchromatic pixels and m of the model problem in (6),
which is a step function w.r.t. m in [mmin,+∞).

A. Frequency Structure

The frequency structure is a matrix with the same size as
the corresponding CFA pattern, which records the positions
and relations of all luma and chromas of raw images captured
by the CFA (see the third row of Fig. 1) [12]. It is image
independent and relies only on the CFA. The frequency
structure is attractive for the conversion between it and the
CFA pattern is simple. For a given CFA pattern, the frequency
structure can be easily computed using the symbolic Discrete
Fourier Transform (DFT), which is a standard DFT except
treating symbols as parameters [31]. More specifically, by
applying the symbolic DFT to a given CFA pattern, we can
obtain its frequency structure and the relationship between its
frequency components and RGB color components, which is
given as:

(FL , FC1 , FC2)
T = M(R,G, B)T , (1)

where FL , FC1 , and FC2 denote the luma and the two chromas,
respectively, R, G, and B refer to the red, green, and blue color
components, respectively, and M ∈ C3×3 is invertible and is
called the color transformation matrix. Conversely, given a
matched color transformation matrix M, we can obtain the
corresponding CFA pattern by applying the inverse symbolic
DFT to the frequency structure. So all the CFA patterns with an
identical frequency structure can be parameterized by M. This
leads to the frequency-structure-based CFA design [12], [13]
described below.

For a given frequency structure (e.g., one of those in the
third row of Fig. 1), we first parameterize the complex color
transformation matrix M as M1 + iM2, where M1 and M2 are
the real and imaginary parts of M, respectively. Then accord-
ing to (1), we parameterize the frequency structure as M.
We next apply the inverse symbolic DFT to the parame-
terized frequency structure and obtain the vectorized CFA
pattern C�(M) + D�(M), where C and D are the complex

coefficient matrices. An example of C and D is shown in
Fig. 2(a). Let K j be the j -th channel of the CFA pattern with
a size of nr × nc, where j ∈ {R,G, B}. Then the vectorized
CFA pattern is (vec(KR), vec(KG), vec(KB)) with a size of
nr nc × 3. After this, CFA design is converted into the
optimization of M. Since M is the transformation matrix
between two bases (see (1)), it is considered optimal
when the numerical stability of color transformation is
maximized [12], which can be accomplished by directly
minimizing ‖M−1‖2 [13]. By doing so, the robustness to
aliasing artifacts of the obtained CFA is maximized. For-
mally, Bai et al. [13] formulated the optimization of M as
follows:

min
M

‖M−1‖2

s.t. Ma = b,C�(M)+ D�(M) ≥ 0, (2)

where ≥ stands for componentwise greater than or equal to,
a = (1, 1, 1)T , and b = (1, 0, 0)T . The equality constraint
guarantees that the sum across color channels of the CFA
pattern is an all-one matrix, while the inequality constraint
ensures the physical realizability.

B. Proposed Formulation

Based on the frequency structure, we design high-sensitivity
CFAs with panchromatic pixels in the frequency domain.
According to previous discussion, for a given frequency struc-
ture, we have two objectives on the optimality of M. The
first one is that the value of ‖M−1‖2 should be minimized.
The second one is that the percentage of panchromatic pixels
should be maximized. For a given CFA pattern size, it is equiv-
alent to minimizing the number of non-panchromatic pixels.
Let the vectorized CFA pattern be C�(M) + D�(M), then
the number of non-panchromatic pixels can be represented
as

∥
∥(C�(M)+ D�(M))T − 1

3111
∥
∥

2,0. Following [12], [13], we
also enforce the CFA pattern to be physically realizable and
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the sum across its color channels to be an all-one matrix.
Accordingly, for a given frequency structure, we propose the
following model to optimize M:

min
M

{

‖M−1‖2,
∥
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥
∥

2,0

}

s.t. Ma = b, C�(M)+ D�(M) ≥ 0. (3)

It is a continuous multi-objective optimization problem with
two objectives.

C. Analysis on Our Formulation

A multi-objective optimization problem results in a set of
Pareto-optimal solutions, which need a further decision to get
a single preferred one [30]. The Pareto-optimality is defined
based on the objective function values of feasible solutions.
Formally, we have the following definition:

Definition 1: A feasible solution x∗ is Pareto optimal if
there does not exist a feasible solution x such that x is no
worse than x∗ in all objectives and x is strictly better than x∗
in at least one objective.

The finding of all Pareto-optimal solutions becomes
challenging when the objectives are in conflict, i.e., mini-
mizing one objective can increase the values of the others.
Unfortunately, the two objectives in (3) do conflict each other.
Namely, for a given frequency structure, a lower percentage
of non-panchromatic pixels often accompanies with a larger
value of ‖M−1‖2 (see Fig. 2 (b)-(e)).

One may utilize the frequently used weighting method [30]
to solve problem (3). It associates the two objective functions
with a weighting coefficient and minimizes their weighted
sum. As a result, the two objective functions are transformed
into a single one and different Pareto-optimal solutions of
problem (3) are obtained by altering the weighting coefficient
in the weighted problem. Formally, problem (3) is converted
into:

min
M

‖M−1‖2 + μ
∥
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥
∥

2,0

s.t. Ma = b,C�(M)+ D�(M) ≥ 0, (4)

where μ > 0 is the weighting coefficient. However, the
weighting method requires choosing an appropriate μ in (4)
to generate the desired Pareto-optimal solution of problem (3).
When the solution of the weighted problem is Lipschitz
w.r.t. the weighting coefficients, selecting the proper weight-
ing coefficients is trivial [30]. Unfortunately, problem (4)
does not meet the requirement of Lipschitz continuity as
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥

2,0 is a discrete function. More-
over, since problem (3) is non-convex, altering μ in (4) cannot
produce all its Pareto-optimal solutions [30], which implies
that the desired one may not be found by the weighting
method. Note that a multi-objective optimization problem is
convex if all the objective functions and the feasible region are
convex.

Let R be the range of
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥

2,0.
It is discrete and finite. So all the Pareto-optimal solutions of
problem (3) are among the solutions to the following model

problem:

min
M

‖M−1‖2

s.t. Ma = b,C�(M)+ D�(M) ≥ 0,
∥
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥
∥

2,0
= l, (5)

for every l ∈ R. Note that R ⊂ {2, 3, · · · , nr nc}. Actually,
some integers between 2 and nr nc are not in R. The reasons
are as follows. Let the vectorized CFA pattern be CM1 +
DM2 = (C,D)

(
M1
M2

)

. Then no matter what the value of M is,
the rows having the same values in (C,D) result in identical
color component. We provide an example in Fig. 2 (a). We
can see that (C,D) has five unique rows, each of which
appears five times. So 2, 6, and 11 are not in R. On the
other hand, different unique rows may also generate identical
color component. We can see from Fig. 2(e) that there are
three unique rows that produce panchromatic pixels. When the
feasibility and invertibility of M in (3) are further considered,
it will be non-trivial to exactly determine R.

Based on the above observations, we modify the model
problem in (5) as follows:

min
M

‖M−1‖2

s.t. Ma = b,C�(M)+ D�(M) ≥ 0,
∥
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥
∥

2,0
≤ m, (6)

for every m ∈ {mmin, · · · , nr nc}, where mmin is the
minimum number of non-panchromatic pixels that the
frequency structure could produce. The model problem in (6)
can also generate all the Pareto-optimal solutions of prob-
lem (3). As we can see from Fig. 2(f), the obtained number
of non-panchromatic pixels by (6) is a step function w.r.t. m.
This implies that the model problem in (6) is feasible w.r.t. m
in [mmin,+∞). Accordingly, to solve problem (3), we only
need to compute mmin rather than determining R.

III. PROPOSED DESIGN METHOD FOR

HIGH-SENSITIVITY CFAs

Based on our analysis above, we propose a new method
to design high-sensitivity CFAs. The whole process of the
proposed design method is shown in Fig. 3. It consists of two
main steps. For a given CFA pattern size, it first proposes
frequency structure candidates (the dashed box in Fig. 3).
Then it optimizes parameters for each candidate to obtain a
promising CFA. Below we describe the two steps in detail.

A. Propose Frequency Structure Candidates

1) Generate All Frequency Structures: Bai et al. [13]
developed a discrete multi-objective optimization approach
to propose the potentially optimal frequency structures in
minimizing aliasing artifacts. However, due to the conflict
between the robustness to aliasing artifacts and the number
of panchromatic pixels, their approach is not applicable in
designing high-sensitivity CFAs. So we generate all frequency
structures. As shown in Fig. 3(a), the only luma is fixed at
the top-left entry of the frequency structure. We only need
to specify the replicas of two chromas and their positions
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Fig. 3. Overview of the proposed design method for high-sensitivity CFAs. From left to right: (a) is the input CFA pattern size, in which ‘FL ’ marks the
position of luma and ‘0’ marks the available chroma positions. Our method first generates all frequency structures (b). Then it selects the frequency structures
which can produce CFAs reaching a desired percentage of panchromatic pixels (c). For each selected frequency structure, it optimizes parameters to get the
designed CFA (d). Note that our method produces a unique CFA for each frequency structure candidate. However, a CFA pattern size often results in multiple
frequency structure candidates (see (c)). We only output the CFA with the best demosaicking performance on a training image set (e).

in the matrix to determine a frequency structure. We first
obtain all chroma position allocations, and then we generate
frequency structures according to them. These two steps have
been described in detail in [13]. We discard the frequency
structures whose chroma replicas are located on the horizontal
and the vertical axes of luma. Moreover, in order to reduce
the spectral overlap among chroma replicas, we reject the
frequency structures which contain chroma replicas at adja-
cent positions in the same row or column, as well as those
containing more than 5 chroma replicas.

2) Select Frequency Structures: We select frequency struc-
tures based on the maximum percentages of panchromatic
pixels that they can generate. For a given CFA pattern size,
we first compute the minimum number of non-panchromatic
pixels mmin of every frequency structure, which is formulated
as an optimization problem:

min
M

∥
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥
∥

2,0

s.t. Ma = b,C�(M)+ D�(M) ≥ 0,

‖M−1‖2 ≤ ν, (7)

where ν > 0 is a constant. The constraint ‖M−1‖2 ≤ ν ensures
that M is invertible. Suppose we know the mmin of a frequency
structure in advance. Then we let m be mmin in (6) and
obtain the optimal solution M∗. If the pre-set ν is smaller than
‖(M∗)−1‖2, we will not be able to obtain mmin by solving (7).
So we set ν to be a sufficiently large number so that M∗ is
a feasible solution of problem (7). In all our experiments, we
set ν = 100. In order to improve the readability, we provide
the solution process for (7) in the Appendix.

Let the solution to (7) be M̂, then the minimum number
of non-panchromatic pixels will be ‖(C�(M̂) + D�(M̂)T −
111/3‖2,0. The corresponding maximum percentage of panchro-

matic pixels is 1 − ‖(C�(M̂) + D�(M̂)T − 111/3‖2,0/(nr nc).
We discard the frequency structures whose maximum percent-
ages of panchromatic pixels are below ρ, where ρ is a desired
percentage of panchromatic pixels. As most of the existing
high-sensitivity CFAs include 50% panchromatic pixels, we set

ρ = 0.5 in our experiments. We take the remaining frequency
structures as candidates. So the minimum number of non-
panchromatic pixels mmin of every candidate is less than or
equal to �(1 − ρ)nr nc�, where �·� denotes the floor function,
which rounds a scalar to the largest integer less than or equal
to that scalar.

B. Optimize Parameters

For every frequency structure candidate, �(1 − ρ)nr nc� is
in [mmin,+∞), where mmin is the minimum number of non-
panchromatic pixels that it can produce. According to the
analysis on the model problem in (6), every candidate is
feasible to the following parameter optimization problem:

min
M

‖M−1‖2

s.t. Ma = b,C�(M)+ D�(M) ≥ 0,
∥
∥
∥(C�(M)+ D�(M))T − 111/3

∥
∥
∥

2,0
≤ �(1 − ρ)nr nc�. (8)

The solution to problem (8) results in a CFA whose
percentage of panchromatic pixels is greater than or equal to ρ.
Meanwhile, the robustness to aliasing artifacts of the CFA is
maximized. So the obtained solution is an appropriately bal-
anced solution to the multi-objective optimization problem (3).
Due to the space limit, we move the details of solving (8) to
the Supplementary Material.

IV. EXPERIMENTS

In this section, we conduct experiments on benchmark
images to test the effectiveness of our high-sensitivity CFA
design method. Our method consists of two sequential design
steps, frequency structure selection and parameter optimiza-
tion. So we first compare our parameter optimization method
with those of other CFA design methods, where the first design
step of our method is disabled and the frequency structures are
given. Then we design a new CFA using the proposed method
and compare it with other CFAs, where the two design steps
are both active. The two comparisons together can testify to
the effectiveness of both design steps.
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A. Experimental Settings
1) Compared Design Methods and CFAs: We compare

with five existing design methods for high-sensitivity CFAs.
They are proposed by Compton and Hamilton, Jr., [6],
Kumar et al. [7], Honda et al. [8], Wang et al. [9], and
Chakrabarti et al. [10], respectively. We also compare with
their designed CFAs on benchmark images. Since the Bayer
CFA [5] is the most popular CFA in the literature, we also
include it for comparison.

2) Datasets: We expect a CFA to work well in both
low-light and normal-light conditions. So we evaluate the
performance of CFAs on both low-light and normal-light
datasets. It should be noted that, when capturing a normal-
light scene, the panchromatic pixels are likely to be saturated
due to their high light sensitivity. Following [27], we assume
that the shutter speed of panchromatic pixels is controllable
to users and the exposure times are carefully set so that the
captured raw images have no saturated pixels.

We use the low-light dataset in [10], which is publicly
available [32], to test the demosaicking performance in low-
light conditions. It includes 10 images of indoor and outdoor
scenes selected from the dataset of Gehler et al. [33]. These
images are the linear version generated by Shi and Funt [34],
where every 2 × 2 Bayer block in the original images is
replaced with the average value of the block. All the 10 images
are with a size of 2041 × 1359 pixels and encoded in RGB
with 8 bits per channel.

We choose the commonly used Kodak dataset [11] as the
normal-light dataset. It contains 24 images of various subjects
in many locations. They are film captured and then digitized.
The final images are padded to a size of 512×768 pixels and
encoded in RGB with 8 bits per channel.

3) Universal Demosaicking Algorithms: We briefly intro-
duce recent universal demosaicking algorithms, which are
applicable to arbitrary periodic CFAs defined on the square
lattice. Menon and Calvagno [35] proposed a regularization
approach to demosaicking, which exploits global and local
natural color image priors. Condat [36] presented a variational
approach, where the reconstructed image has maximal smooth-
ness under the constraint of being consistent with the mea-
surements. Based on the spatio-spectral sampling theory and a
filter-bank-based treatment of color image sampling, a nonlin-
ear demosaicking algorithm was introduced by Gu et al. [37].
Singh and Singh [38] developed a demosaicking algorithm,
which can be easily adapted to arbitrary CFAs. Based on
the different frequency locations of luma and chromas of
raw images captured by a periodic CFA, many frequency-
selection-based demosaicking algorithms were proposed [14],
[39], [40]. These algorithms are linear, which provides a
good compromise between image quality and computational
complexity.

In order to be fair, we adapt the least-squares luma-chroma
demultiplexing (LSLCD) algorithm [40] to all the compared
CFAs except the Chakrabarti CFA [10]. It is a frequency-
selection-based demosaicking algorithm, where the filters are
learned to minimize the mean-squared demosaicking error over
a training image set. In all experiments, we use a 21×21 filter
size. When testing a CFA on an image from a dataset, we learn

TABLE II

EVALUATION OF THE NUMERICAL STABILITY OF COLOR TRANSFORMA-
TION. FOUR EXISTING DESIGN METHODS FOR HIGH-SENSITIVITY

CFAs ARE COMPARED WITH THE PROPOSED ONE IN PARAME-
TER OPTIMIZATION. “ORIG.” STANDS FOR “ORIGINAL”. NOTE

THAT OUR METHOD OBTAINS THE SAME ‖M†‖2 VALUE
BUT DIFFERENT M AS THOSE OF THE HONDA CFA [8].

MOREOVER, OUR METHOD PRODUCES THE IDENTI-
CAL M AND HENCE THE SAME ‖M†‖2 VALUE AS

THOSE OF THE WANG CFA [9]

TABLE III

EVALUATION OF THE PROPOSED PARAMETER OPTIMIZATION METHOD

ON THE LOW-LIGHT DATASET. “AVG.” STANDS FOR “AVERAGE”.
THE INDIVIDUAL AND AVERAGE CPSNR VALUES ARE REPORTED.

NOTE THAT OUR NEWLY DESIGNED CFA IS IDENTICAL TO THE

WANG CFA [9]. SO THEIR CPSNR VALUES ARE THE SAME

filters for the CFA on the remaining images of the dataset,
resulting in a different set of filters for every test image. For
example, when we attempt to test the Bayer CFA on an image
from the Kodak dataset, we learn filters for this image on the
other 23 images of the Kodak dataset. If a chroma of a CFA
has multiple replicas, we simply average all estimations of
the chroma. The Chakrabarti CFA has 15 different chromas
(see Fig. 1(3f)), making the distances among chroma replicas
very small (see Fig. 1(2f)). So the frequency-selection-based
demosaicking is not appropriate for it. We use its associated
reconstruction algorithm to demosaick it, whose source code
is publicly available [32].

We note that the demosaicking algorithms also affect the
quality of demosaicked images. However, as we focus on
designing CFAs, we do not conduct an extensive comparison
of demosaicking algorithms in this work.

B. Comparison of Parameter Optimization

For a given high-sensitivity CFA pattern, we can determine
its number of panchromatic pixels, frequency structure, and
color transformation matrix M. However, for a given frequency
structure and a feasible number of panchromatic pixels, we
have to use a parameter optimization method to get an M to
finally obtain a high-sensitivity CFA pattern. This provides
a chance to compare with other CFA design methods in
parameter optimization.

For a high-sensitivity CFA patten designed by an existing
method, we first compute its frequency structure and the
number of panchromatic pixels. Then with them, we obtain
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TABLE IV

EVALUATION OF THE PROPOSED PARAMETER OPTIMIZATION METHOD ON
THE KODAK DATASET. “AVG.” STANDS FOR “AVERAGE”. THE INDIVID-

UAL AND AVERAGE CPSNR VALUES ARE REPORTED. NOTE THAT

OUR NEWLY DESIGNED CFA IS IDENTICAL TO THE WANG

CFA [9]. SO THEIR CPSNR VALUES ARE THE SAME

TABLE V

EVALUATION OF THE PROPOSED Circ4 CFA ON THE LOW-LIGHT DATASET.
SIX EXISTING CFAs ARE COMPARED WITH THE PROPOSED ONE,

WHERE THE FIRST ROW ARE THEIR RESPECTIVE PERCENTAGES
OF PANCHROMATIC PIXELS. THE INDIVIDUAL AND

AVERAGE CPSNR VALUES ARE REPORTED

a new M as well as a new CFA by solving (8), where ρ is
set to be the percentage of panchromatic pixels of the original
CFA. We next compare the new CFA with the original one.

Since the newly designed CFA has an identical percentage
of panchromatic pixels as the original one, we only com-
pare the numerical stability of color transformation, which
is related to the robustness to aliasing artifacts. We want to
note that, in previous discussion, following most CFA design
methods [12], [13], [15], [16], we assume that there are only
two independent chromas in the frequency structures. Below
Theorem 1 in the Appendix, we show that our parameter
optimization model in (8) can be easily generalized to deal
with frequency structures with more than two chromas. So for
the general case, we compare ‖M†‖2 instead of ‖M−1‖2. The
values of ‖M†‖2 are reported in Table II. A smaller value may

Fig. 4. The proposed Circ4 CFA pattern. (1) is the proposed 4×4 circulant
CFA pattern. (2)-(4) are its spectrum, frequency structure, and color values,
respectively. The notations in (2) and (3) are the same as those in Fig. 1.

TABLE VI

EVALUATION OF THE PROPOSED CIRC4 CFA ON THE KODAK DATASET.
SIX EXISTING CFAs ARE COMPARED WITH THE PROPOSED ONE,

WHERE THE FIRST ROW ARE THEIR RESPECTIVE PERCENTAGES

OF PANCHROMATIC PIXELS. THE INDIVIDUAL AND AVERAGE
CPSNR VALUES ARE REPORTED

indicate higher numerical stability and hence more robustness
to aliasing artifacts. From left to right, the four groups of
comparisons correspond to the Compton CFA [6], Kumar
CFA [7], Honda CFA [8], and Wang CFA [9], respectively.
Note that the ‖M†‖2 values cannot be directly compared across
different CFAs [12], [13]. We can see that our new color
transformations based on the Compton CFA and the Kumar
CFA are more stable than those of the original ones (see
the first two groups of Table II). Our method obtains the
identical ‖M†‖2 value but different M as those of the Honda
CFA (see the third group of Table II). It seems to show that
the Honda CFA is comparable to our newly designed one.
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Fig. 5. Blowups of some demosaicked images in the low-light dataset. From top to bottom, the images are from #3, #9, and #10 images of the low-light
dataset, respectively. In each group, (a) is the scaled original image, in which the red rectangle indicates the selected patch to blow up; (b) is the ground truth;
(c)-(h) and (i) are the images demosaicked from the raw images by other CFAs and the proposed one, respectively. From all the groups of images, we can
clearly see that there are obvious zipper effects or false color artifacts along edges in the images demosaicked from the raw images by other CFAs, while
those by our Circ4 CFA have better visual quality.

However, the following comparisons show that the new CFA
still outperforms the original one. Our method produces an
identical M as that of the Wang CFA, which implies that
the parameters of the Wang CFA are already optimal for its
frequency structure with its number of panchromatic pixels.
So the ‖M†‖2 values are also the same.

Then with the same demosaicking algorithm, we compare
the newly designed CFAs with their respective original ones
on both low-light and Kodak datasets. The CPSNR values
are reported in Table III and Table IV, respectively. The
better values in each group are in boldface. Concurring the
comparisons on ‖M†‖2, our newly designed CFAs outperform
the Compton CFA and the Kumar CFA with significant gaps on
both low-light and Kodak datasets (see the first two groups of
Table III and Table IV). Our new CFA designed according to
the Honda CFA slightly outperforms the original one on both
datasets (see the third groups of Table III and Table IV). As our
new CFA designed according to the Wang CFA is identical to

the original one, they have the same CPSNR values (see the
last groups of Table III and Table IV).

C. Comparison of CFAs

We first generate a new CFA pattern using our design
method and then compare it with the others on both low-light
and Kodak datasets. The design process for a given CFA
pattern size is demonstrated in Fig. 3. We check all pattern
sizes that are smaller than or equal to 9 × 9. The CFA
pattern that performs the best in our tests is shown in Fig. 4.
It is a 4×4 CFA pattern with 50% panchromatic pixels
(Fig. 4(1)). Also, it is clear that the new CFA pattern has
only two color components, making its manufacturing much
more advantageous. Our CFA pattern is circulant, so we call
it the Circ4 CFA pattern. Its spectrum and frequency structure
are shown in Fig. 4(2) and 4(3), respectively. We can see that
all its chroma replicas are located far away from the center
and the horizontal and the vertical axes. The color values of
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Fig. 6. Blowups of some demosaicked images in the Kodak dataset. From top to bottom, the images are from #1, #4, #14, and #19 images of the Kodak
dataset, respectively. In each group, (a) is the scaled original image, in which the red rectangle indicates the selected patch to blow up; (b) is the ground
truth; (c)-(h) and (i) are the images demosaicked from the raw images by other CFAs and the proposed one, respectively. From all groups of images, we can
clearly see that the images demosaicked from the raw images with other CFAs have severe zipper effects or false color artifacts, while those by our Circ4
CFA have better subjective quality. We want to note that, in the last group, the images by the Wang CFA and Circ4 CFA are almost perfect, which testifies
to the importance of reducing spectral overlap for suppressing aliasing artifacts.

the Circ4 CFA pattern are shown in Fig. 4(4), while its color
transformation matrix M is:

M =
⎛

⎝

0.16666 0.41667 0.41667
0.00000 0.17688 −0.17688

−0.16666 0.08333 0.08333

⎞

⎠ .

Then we test the demosaicking performance of our new CFA
on both low-light and Kodak datasets. The CPSNR values
on the two datasets are reported in Table V and Table VI,
respectively. The best values are in boldface. As mentioned

before, we use the associated reconstruction algorithm for the
Chakrabarti CFA [10] and the modified LSLCD algorithm [40]
for other CFAs. Besides the existing high-sensitivity CFAs, we
also include the Bayer CFA for comparison. The CFAs with
different percentages of panchromatic pixels are compared
separately. With the identical percentage of panchromatic
pixels, we can see that our Circ4 CFA significantly out-
performs the Compton CFA, Kumar CFA, and Honda CFA
on both low-light and Kodak datasets with gaps of about
1dB and 3dB in average, respectively. The Bayer CFA and
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Wang CFA have lower percentages of panchromatic pixels
than our Circ4 CFA does, which implies that they are infe-
rior in light sensitivity. Besides that, the Circ4 CFA also
results in better CPSNR values on both low-light and Kodak
datasets. The Chakrabarti CFA includes a higher percentage of
panchromatic pixels than the Circ4 CFA does. Benefiting from
this as well as the associated reconstruction algorithm, it also
achieves competitive CPSNR values on the low-light dataset,
which is inferior to our Circ4 CFA with a gap of 0.68dB
in average. However, when compared on the Kodak dataset,
the Chakrabarti CFA is much worse than the Circ4 CFA with
a significant gap of 4.39dB in average. Thus we consider that
the Chakrabarti CFA values light sensitivity more than color
fidelity, which can be further verified in the following visual
comparison.

We also present part of the visual comparison on the
low-light and Kodak datasets in Fig. 5 and Fig. 6, respectively.
We can see that the visual quality of our Circ4 CFA is better
than the others on both datasets (Please read the captions for
the descriptions on visual difference.).

V. CONCLUSIONS

In this paper, we have extended the approach in [13]
to design high-sensitivity CFAs with panchromatic pixels
in the frequency domain, which has a mathematical model
and is fully automatic. To accomplish this, we formulated
high-sensitivity CFA design with panchromatic pixels as a
multi-objective optimization problem, which simultaneously
maximizes the robustness to aliasing artifacts and the percent-
age of panchromatic pixels. We analyzed the new formulation,
based on which we proposed a new high-sensitivity CFA
design method. Extensive experiments on both low-light and
normal-light datasets have demonstrated the superiority of
our design method. Future work will include adapting our
method to design various specific CFAs such as for given
demosaicking algorithms and specialized cameras.

APPENDIX

SOLVING PROBLEM (7)

We use the alternating direction method (ADM) [41] to
solve problem (7). Since ADM requires linear constraints, we
first let C = C1 + iC2 and D = D1 + iD2, then the constraint
C�(M) + D�(M) ≥ 0 in (7) can be written into two linear
ones: C1�(M)+ D1�(M) ≥ 0 and C2�(M)+ D2�(M) = 0.
So we rewrite (7) as follows:

min
M

∥
∥
∥(C1�(M)+ D1�(M))T − 111/3

∥
∥
∥

2,0

s.t. Ma = b,C1�(M)+ D1�(M) ≥ 0,

‖M−1‖2 ≤ ν,C2�(M)+ D2�(M) = 0. (9)

We next introduce three auxiliary variables N1, N2, and S to
reformulate (9) as follows:

min
M,N1,N2,S

I�(M)+ I�(S)+ ‖S‖2,0

s.t. M = N1 + iN2, (N1 + iN2)a = b,

(C1N1 + D1N2)
T − 111/3 = S,C2N1 + D2N2 = 0, (10)

where � = {M|‖M−1‖2 ≤ ν}, � = {S|S ≥ −111/3}, and
I�(·) and I�(·) are indicator functions defined on � and � ,
respectively. The indicator function of a set � is defined as

I�(y) =
{

0, y ∈ �,
+∞, otherwise.

The augmented Lagrangian function of problem (10) is:

L(M,N1,N2,S,X, x,Y,Z)

= I�(M)+ I�(S)+ ‖S‖2,0

+ 〈X,M − (N1 + iN2)〉 + 〈x, (N1 + iN2)a − b〉
+ 〈Y, (C1N1 + D1N2)

T − 111/3 − S〉 + 〈Z,C2N1 + D2N2〉
+ β

2

(

‖M − (N1 + iN2)‖2
F + ‖(N1 + iN2)a − b‖2

2

+ ‖(C1N1 + D1N2)
T − 111/3 − S‖2

F + ‖C2N1 + D2N2‖2
F

)

,

(11)

where X, x,Y, and Z are the Lagrange multipliers, 〈·, ·〉 is the
inner product, and β > 0 is the penalty parameter which is
updated during iterations.

Then by ADM, we can solve problem (10) via the following
iterations:

Mk+1 = argmin
M

L(M,Nk
1,Nk

2,Sk,Xk, xk,Yk,Zk)

= argmin
M

I�(M)+ β

2
‖M − (Nk

1 + iNk
2)+ Xk/β‖2

F

= argmin
M

I�(M)+ 1

2
‖M − Wk‖2

F , (12)

{Nk+1
j }2

j=1

= argmin
N1,N2

L(Mk+1,N1,N2,Sk,Xk, xk,Yk,Zk)

= argmin
N1,N2

1

2
‖Mk+1 − (N1 + iN2)+ Xk/β‖2

F

+ 1

2
‖(N1 + iN2)a − b + xk/β‖2

2

+ 1

2
‖C1N1 + D1N2 − (111/3 + Sk − Yk/β)T ‖2

F

+ 1

2
‖C2N1 + D2N2 + Zk/β‖2

F , (13)

Sk+1 = argmin
S

L(Mk+1,Nk+1
1 ,Nk+1

2 ,S,Xk, xk,Yk,Zk)

= argmin
S

I�(S)+ ‖S‖2,0

+ β

2
‖(C1Nk+1

1 + D1Nk+1
2 )T − 111/3 − S + Yk/β‖2

F

= argmin
S

I�(S)+ ‖S‖2,0 + β

2
‖S − Pk‖2

F

= max(−111/3,prox
�2,0
2/β(�(Pk))), (14)

Xk+1 = Xk + β(Mk+1 − (Nk+1
1 + iNk+1

2 )), (15)

xk+1 = xk + β((Nk+1
1 + iNk+1

2 )a − b), (16)

Yk+1 = Yk + β((C1Nk+1
1 + D1Nk+1

2 )T − 111/3 − Sk+1),

(17)

Zk+1 = Zk + β(C2Nk+1
1 + D2Nk+1

2 ), (18)
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where Wk = (Nk
1 + iNk

2) − Xk/β in (13), Pk = (C1Nk+1
1 +

D1Nk+1
2 )T −111/3+Yk/β in (14), and prox�2,0

ψ (·) is the proximal
operator of �2,0-norm for a positive constant ψ , which is
defined by

prox�2,0
ψ (H) = argmin

J
ψ‖J‖2,0 + ‖J − H‖2

F . (19)

The j -th column of prox
�2,0
ψ (H) is computed as:

[

prox
�2,0
ψ (H)

]

:, j
=

{

[H]:, j , if ‖[H]:, j‖2
2 > ψ,

0, otherwise.

The solution to problem (13) is given by Theorem 1, whose
proof can be found in the Supplementary Material.

Theorem 1: The solution to problem (12) is:

Mk+1 = Uk
k+1(Vk)H , (20)

where Uk���k(Vk)H is the full SVD of Wk , Uk and Vk are uni-
tary matrices,���k = diag(λλλk), λλλk = (λk

1, λ
k
2, λ

k
3)

T is the vector
of singular values of Wk and satisfies λk

1 ≥ λk
2 ≥ λk

3 > 0, and


k+1 = diag(σσσ k+1), in which σσσ k+1 = (σ k+1
1 , σ k+1

2 , σ k+1
3 )T

is defined as:

σσσ k+1 = max(1/ν,λλλk). (21)
It should be noted that, in the above theorem as well as the

model in (7), M is assumed to be a 3×3 invertible matrix. This
implies that the frequency structure has only one luma and two
independent chromas. However, M ∈ Cn×3 is of full column
rank in general, where n ≥ 3 is the number of frequency
components. In this case, we only need to replace the full
SVD and M−1 with the skinny SVD and M†, respectively.
Other than that there are no changes in Theorem 1 and the
whole solution process of problem (7). Note that for a full
column rank matrix M ∈ Cn×3, its full SVD is defined by
(U1,U2)(


T , 0T )T VH , where (U1,U2) ∈ Cn×n and V ∈
C3×3 are both unitary matrices, U1 ∈ Cn×3, and 
 ∈ R3×3 is
a diagonal matrix, whose diagonal elements are the positive
singular values of M. However, its skinny SVD is defined
as U1
VH .

Problem (13) has a closed-form solution and we show the
solution process as follows. Let E =

(
N1
N2

)

in (13), then the
objective function of (13) becomes:

F(E) = 1

2

∥
∥
∥Mk+1 − (I, iI)E + Xk/β

∥
∥
∥

2

F

+ 1

2

∥
∥
∥(I, iI)Ea − b + xk/β

∥
∥
∥

2

2

+ 1

2
‖(C1,D1)E − (111/3 + Sk − Yk/β)T ‖2

F

+ 1

2
‖(C2,D2)E + Zk/β‖2

F . (22)

It is equivalent to the following function:

f (vec(E)) = 1

2
‖A1vec(E)− bk

1‖2
2 + 1

2
‖A2vec(E)− bk

2‖2
2

+ 1

2
‖A3vec(E)− bk

3‖2
2 + 1

2
‖A4vec(E)− bk

4‖2
2,

(23)

Algorithm 1 The ADM Algorithm for Problem (9)

where A1 = I ⊗ (I, iI),A2 = aT ⊗ (I, iI),A3 =
I ⊗ (C1,D1),A4 = I ⊗ (C2,D2),bk

1 = AH
1 vec(Mk+1 +

Xk/β),bk
2 = AH

2 (b − xk/β),bk
3 = AH

3 vec((111/3 + Sk −
Yk/β)T ),bk

4 = AH
4 vec(−Zk/β), ⊗ denotes the Kronecker

product, and I is a 3 × 3 (n × n for the general case) identity
matrix. Setting ∂ f

∂vec(E) = 0, we have the solution to (23) as
follows:

vec(Ek+1) = vec

(

Nk+1
1

Nk+1
2

)

= G−1(bk
1 + bk

2 + bk
3 + bk

4), (24)

where G = AH
1 A1 + AH

2 A2 + AH
3 A3 + AH

4 A4.
To accelerate convergence, we use the following strategy to

adaptively update the penalty parameter β [41]:

βk+1 =
{

min(βmax, β
kγ ), if βkαk < ε1,

βk, otherwise,
(25)

where βmax is an upper bound of {βk}, γ ≥ 1 is a constant
and αk = max{‖Mk+1 − Mk‖∞, ‖Nk+1

1 − Nk
1‖∞, ‖Nk+1

2 −
Nk

2‖∞, ‖Sk+1 − Sk‖∞}. The stopping criteria are:

βkαk < ε1 and (26)

max{‖Mk+1 − Nk+1
1 − iNk+1

2 ‖∞,

‖(Nk+1
1 + iNk+1

2 )a − b‖∞,

‖(C1Nk+1
1 + D1Nk+1

2 )T − 111/3 − Sk+1‖∞, (27)

‖C2Nk+1
1 + D2Nk+1

2 ‖∞} < ε2.

Since problem (9) is non-convex, different initializations of
M may lead to different local minima. As in [13], we initialize
M with every element in the following set and finally select the
M that resulted in the smallest number of non-panchromatic
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pixels:

� = {diag((1, 1, 1)T ), diag((1, 1,−1)T ), diag((1,−1, 1)T ),

diag((1,−1,−1)T ), diag((−1, 1, 1)T ),

diag((−1, 1,−1)T ),

diag((−1,−1, 1)T ), diag((−1,−1,−1)T )}. (28)

We summarize the whole solution process of problem (9)
in Algorithm 1.
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