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In the supplementary material, we prove Theorem 1 in Section 1. Then we present the solution process for problem
(8) in Section 2.

1 Proof of Theorem 1

Theorem 1 shows the solution to the following problem:
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(29)

where Φ = {M|‖M−1‖2 ≤ ν} and Wk = (Nk
1+iNk

2)−Xk/β. The coefficient β is dropped in the last equality as this does
not affect the solution. Problem (29) is problem (12) in the main body of the paper.

Theorem 1. The solution to problem (29) is:

Mk+1 = UkΣk+1(Vk)H , (30)

where UkΛΛΛk(Vk)H is the full SVD of Wk, Uk and Vk are unitary matrices, ΛΛΛk = diag(λλλk), λλλk = (λk1 , λ
k
2 , λ

k
3)T is

the vector of singular values of Wk and satisfies λk1 ≥ λk2 ≥ λk3 > 0, and Σk+1 = diag(σσσk+1), in which σσσk+1 =
(σk+1

1 , σk+1
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3 )T is defined as:
σσσk+1 =max(1/ν,λλλk). (31)

Proof. Let δj(·) denotes the j-th largest singular value of a matrix, then we have:
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(32)

The inequality in the fourth row of (32) is due to von Neumann’s inequality [?], where the equality holds only when the
matrices of left and right singular vectors of M are the same as those of Wk. Then by minimizing the last row of (32),
it is easy to see that the singular values of M are given by (31). Thus the theorem is proved.

2 Solving Problem (8)

The solution process of problem (8) is similar to that of problem (7), which has been described in detail in the Appendix
of the main body of the paper. To reduce redundancy, we adopt the notations used in solving problem (7) and only
describe their differences in solution process.

Similarly, we reformulate problem (8) as follows:

min
M,N1,N2,S

‖M−1‖2+IΘ(S)

s.t. M=N1+iN2, (N1+iN2)a=b,

(C1N1+D1N2)T−111/3=S,C2N1+D2N2 =0,

(33)
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where Θ = {S|‖S‖2,0 ≤ b(1−ρ)nrncc and S ≥ −111/3}.
The augmented Lagrangian function of problem (33) is:
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(34)

Then by ADM, only the updates of M and S are different from those in solving problem (7). Here the two iterations
are:
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The solution to problem (35) is given by Theorem 2, which has been proven by Bai et al. [?].

Theorem 2 ([?]). The solution to problem (35) is:

Mk+1 = UkΣk+1(Vk)H , (37)

where UkΛΛΛk(Vk)H is the full SVD of Wk, Uk and Vk are unitary matrices, ΛΛΛk = diag(λλλk), λλλk = (λk1 , λ
k
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the vector of singular values of Wk and satisfies λk1 ≥ λk2 ≥ λk3 > 0, and Σk+1 = diag(σσσk+1), in which σσσk+1 =
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Problem (36) can be solved by Algorithm 1.

Algorithm 1 The algorithm for problem (36)

Input: Pk, ρ, nr, nc.
1: Compute S = max(−111/3,<(Pk)).
2: Compute the vector r ∈ Rnrnc×1, where the j-th element is defined as [r]j = ‖[<(Pk)]:,j‖2.
3: Sort r in descending order and have the permutation vector q, which describes the element rearrangement of r.
4: Set [S]:,[q]j = 0, j ∈ {b(1−ρ)nrncc+1, · · · , nrnc}.

Output: S.
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