Supplementary Material of
Lifted Proximal Operator Machines
Optimality Conditions of (Zeng et al., 2018)
The optimality conditions of (Zeng et al., 2018) are (obtamed
by dlfferenuatlng the objective function w.r.t. X™, { X" }1 5
{Wwiyrsl, and {U}7_,, respectively):
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where o denotes the element-wise multiplication.

Proof of Theorem 2

If f(x) is contractive: || f(z)— f(y)|| < p||lz — y||, for all x,
y, where 0 < p < 1. Then the iteration .1 = f () is con-
vergent and the convergence rate is linear (Kreyszig, 1978).
If f(z) is continuously differentiable, then Vi) <p
ensures that f(x) is contractive.

Now we need to estimate the Lipschitz coeffi-
cient p for the mapping X%!*! fXB =

& (WHXH _%(Wi)T(gb(WiXi)—Xm)). Its Jaco-
bian matrix is:
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where C;czt = WXy - W’l (W) (¢(WiXi’t) -
X" )k, 0 sp 18 the Kronecker delta function, it is 1 if s and

p are equal, and O otherwise. Its [y norm is upper bounded
by:
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Its [, norm is upper bounded by
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Therefore, by using ||Allz2 < +/||A]l1||Al|e (Golub and

Van Loan, 2012), the l5 norm of its Jacobian matrix is upper
bounded by
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which is the Lipschitz coefficient p.

Proof of Theorem 3

The proof of the first part is the same as that of The-
orem 2. So we only detail how to estimate the Lips-
chitz coefficient 7 for the mapping X™!*! = f(X™t) =

n,t . . .
o (W”_lX”_1 - %%) Its Jacobian matrix is:

OLf (X™) ]k

Jkl,pg =

oxX
n—1xn-1y, _ 1 9(X""L)
oo (e o)
- n,t
0Xpy ©)
) aé(x"vf;L)
= 4 dn,t GXM"
un¢ ( kl ) anét
1 n 32€(X”7t,L)
= 7;¢/(dkl’t) 8Xn,t8Xn,t ’
n kl Pq



where dj' = (Wn—lxn-1l), — L (w)kl. Its 1 Then by (14) and the convexity of h, we have
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Its [, norm is upper bounded by:
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where ¢ is any subgradient in Oh(xg41), u is any point, and
the third equality used (16). Thus
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Proof of Theorem 4
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is easy to solve. This gives Accordingly,
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With the above choice of {6} and yy, (19) can be rewritten
as
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where z, = A[0;_125_1 —x + (1—0x_1)x*]. Then by re-
cursion, we have

F(xk)—F(x*)+%||Zk||2
k—1
< (H 9> (Flen-Fn)+ 5l l?).

It remains to estimate Hfz_ll 0;. We choose 0y = 0 and
prove
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by induction. (24) is true for k=0. Suppose (24) is true for
k—1, then by 1—0; =+/0;(1—0;_1), we have
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Let 0, = 1— 04, then the above becomes k29~,% <4(1 - 9~k)
So
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Thus (24) is proven.

Now we are ready to estimate Hi:ll 0;. From 1 — 0;, =
VOi(1 — 0x_1), we have
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The three equations, (20), (21), and (15) constitute the
major steps in Algorithm 2.

Convergence Analysis of Algorithm 1

If the loss function is differentiable and both ¢ and ¢! are
strictly increasing, then the objective function of LPOM is d-
ifferentiable and the block coordinate descent in Algorithm 1
converges to stationary points by subsequence (Bertsekas,
1999). Since the objective function of LPOM is block
multi-convex (Theorem 1), the convergence result may be
stronger (Xu and Yin, 2013).
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